Xiaomi Vacuum Map Card中预定义点导航功能的问题分析与解决方案
问题描述
在使用Xiaomi Vacuum Map Card配置Valetudo地图卡片时,用户报告了两个关键问题:
-
当尝试配置预定义导航点(vacuum_goto_predefined)时,控制台报错"undefined is not an object (evaluating 'i.id.toString')",这是由于配置中缺少必要的id属性导致的。
-
即使添加了id属性后,机器人仍然没有响应,服务调用中的坐标值显示为空字符串,而非预期的整数坐标值。
问题根源分析
经过深入分析,发现问题的核心在于:
-
文档不完整:官方文档中遗漏了id属性的说明,导致用户配置时缺少这一必要字段。
-
数据类型问题:服务调用时,坐标值被错误地转换为字符串格式,而Valetudo后端期望的是整数类型。
-
配置结构问题:预定义点导航功能需要明确指定selection_type为PREDEFINED_POINT,否则卡片无法正确处理坐标数据。
解决方案
1. 正确的预定义点导航配置
完整的配置应包含以下关键元素:
- template: vacuum_goto_predefined
selection_type: PREDEFINED_POINT
predefined_selections:
- id: 1 # 必须的唯一标识符
position: [2638, 2533] # 坐标数组
icon:
name: mdi:delete-empty
x: 2638
y: 2533
label:
text: Emptying
x: 2638
y: 2533
offset_y: 35
2. 常见问题排查
如果配置正确但机器人仍不响应,请检查:
-
服务调用内容:确保坐标值以数字形式传递,而非字符串。正确的MQTT payload应为:
{ "coordinates": { "x": 2638, "y": 2533 } } -
Valetudo版本兼容性:某些Valetudo版本对坐标格式有严格要求,确保使用最新稳定版。
-
MQTT主题验证:确认配置的topic路径与Valetudo实际使用的MQTT主题完全匹配。
扩展知识:预定义区域清洁问题
类似的问题也出现在预定义区域清洁(vacuum_clean_zone_predefined)功能中。常见错误包括:
- 缺少id字段导致界面无法渲染
- 区域坐标被错误解析
正确的区域清洁配置示例:
- template: vacuum_clean_zone_predefined
predefined_selections:
- id: "kitchen" # 字符串标识符
zones:
- [3402, 3009, 3783, 3172] # 区域坐标
icon:
name: mdi:silverware-fork-knife
x: 3580
y: 3090
最佳实践建议
-
始终验证服务调用:通过开发者工具检查实际发出的服务调用内容。
-
逐步测试:先测试基本功能,再逐步添加复杂配置。
-
关注数据类型:特别注意数字和字符串类型的区别,这在MQTT通信中尤为重要。
-
保持组件更新:定期更新Xiaomi Vacuum Map Card和Valetudo到最新版本。
通过以上解决方案和最佳实践,用户应该能够成功配置预定义点导航功能,并确保机器人按预期工作。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00