推荐项目:PaMIR - 参数化模型条件隐式表示用于图像基人体重建
2024-05-31 12:06:40作者:舒璇辛Bertina
在计算机视觉和图形学领域,我们常常面临这样一个挑战:如何从单张或多张图片中精确地重建三维人体模型。为此,我们向您推荐一个开源项目——PaMIR,这是一个基于PyTorch的实现,采用参数化模型条件隐式表示(Parametric Model-Conditioned Implicit Representation)进行图像基人体重建。
项目介绍
PaMIR由Zerong Zheng、Tao Yu、Yebin Liu和Qionghai Dai共同开发,其核心在于利用深度学习和隐式函数,结合参数化的SMPL人体模型,从图像数据中准确地构建三维人体几何和纹理信息。通过这个项目,您可以获得高质量的人体3D模型,适用于各种应用场景,如动画制作、虚拟现实、运动捕捉等。
项目技术分析
该项目利用了神经网络的强大学习能力,结合已训练的SMPL模型,对输入图像进行解析。具体来说,它分为两个部分:几何网络(geometry network)和纹理网络(texture network)。几何网络负责从图像中提取人体的3D几何信息,而纹理网络则负责恢复皮肤表面的颜色和细节。这种两阶段的方法确保了人体几何结构的准确性和纹理的逼真度。
应用场景
- 电影与动画制作:PaMIR可以提供高精度的人物3D模型,为角色设计和动作捕捉带来新的可能性。
- 游戏开发:游戏中的角色建模和动画可以受益于PaMIR的实时重建能力。
- 虚拟现实与增强现实:用户可以在虚拟环境中与真实感的3D人物互动。
- 体育分析:通过精确的运动轨迹重建,有助于运动员的技术分析和改进。
项目特点
- 高效:基于PyTorch的实现,易于理解和扩展。
- 精确:结合参数化模型,能够从有限的图像数据中提取精细的几何和纹理信息。
- 广泛的数据支持:可以使用作者提供的THUman 2.0数据集进行训练或微调,该数据集包含了丰富多样的人体扫描。
- 易用性:提供了详细的使用指南和预训练模型,用户可以直接运行测试脚本获取结果。
通过PaMIR,您可以快速入门高级的人体重建任务,无论是在学术研究还是商业应用上,这都是一个值得尝试的强大工具。如果您对此项目感兴趣,不妨立即下载代码并按照提供的教程开始您的探索之旅吧!
如果您的研究或项目受益于PaMIR,请引用以下论文:
@misc{zheng2020pamir,
title={PaMIR: Parametric Model-Conditioned Implicit Representation for Image-based Human Reconstruction},
author={Zerong Zheng, Tao Yu, Yebin Liu, Qionghai Dai},
journal={IEEE Transactions on Pattern Analysis and Machine Intelegence},
year={2021},
primaryClass={cs.CV}
}
如果您有任何问题或建议,欢迎联系项目的开发者:
- Zerong Zheng (zrzheng1995@foxmail.com)
- Yebin Liu (liuyebin@mail.tsinghua.edu.cn)
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882