推荐项目:PaMIR - 参数化模型条件隐式表示用于图像基人体重建
2024-05-31 12:06:40作者:舒璇辛Bertina
在计算机视觉和图形学领域,我们常常面临这样一个挑战:如何从单张或多张图片中精确地重建三维人体模型。为此,我们向您推荐一个开源项目——PaMIR,这是一个基于PyTorch的实现,采用参数化模型条件隐式表示(Parametric Model-Conditioned Implicit Representation)进行图像基人体重建。
项目介绍
PaMIR由Zerong Zheng、Tao Yu、Yebin Liu和Qionghai Dai共同开发,其核心在于利用深度学习和隐式函数,结合参数化的SMPL人体模型,从图像数据中准确地构建三维人体几何和纹理信息。通过这个项目,您可以获得高质量的人体3D模型,适用于各种应用场景,如动画制作、虚拟现实、运动捕捉等。
项目技术分析
该项目利用了神经网络的强大学习能力,结合已训练的SMPL模型,对输入图像进行解析。具体来说,它分为两个部分:几何网络(geometry network)和纹理网络(texture network)。几何网络负责从图像中提取人体的3D几何信息,而纹理网络则负责恢复皮肤表面的颜色和细节。这种两阶段的方法确保了人体几何结构的准确性和纹理的逼真度。
应用场景
- 电影与动画制作:PaMIR可以提供高精度的人物3D模型,为角色设计和动作捕捉带来新的可能性。
- 游戏开发:游戏中的角色建模和动画可以受益于PaMIR的实时重建能力。
- 虚拟现实与增强现实:用户可以在虚拟环境中与真实感的3D人物互动。
- 体育分析:通过精确的运动轨迹重建,有助于运动员的技术分析和改进。
项目特点
- 高效:基于PyTorch的实现,易于理解和扩展。
- 精确:结合参数化模型,能够从有限的图像数据中提取精细的几何和纹理信息。
- 广泛的数据支持:可以使用作者提供的THUman 2.0数据集进行训练或微调,该数据集包含了丰富多样的人体扫描。
- 易用性:提供了详细的使用指南和预训练模型,用户可以直接运行测试脚本获取结果。
通过PaMIR,您可以快速入门高级的人体重建任务,无论是在学术研究还是商业应用上,这都是一个值得尝试的强大工具。如果您对此项目感兴趣,不妨立即下载代码并按照提供的教程开始您的探索之旅吧!
如果您的研究或项目受益于PaMIR,请引用以下论文:
@misc{zheng2020pamir,
title={PaMIR: Parametric Model-Conditioned Implicit Representation for Image-based Human Reconstruction},
author={Zerong Zheng, Tao Yu, Yebin Liu, Qionghai Dai},
journal={IEEE Transactions on Pattern Analysis and Machine Intelegence},
year={2021},
primaryClass={cs.CV}
}
如果您有任何问题或建议,欢迎联系项目的开发者:
- Zerong Zheng (zrzheng1995@foxmail.com)
- Yebin Liu (liuyebin@mail.tsinghua.edu.cn)
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660