Apache DevLake中DORA仪表板SQL查询性能优化实践
2025-06-30 16:13:53作者:翟江哲Frasier
Apache DevLake作为一款开源的数据湖平台,其内置的DORA(DevOps Research and Assessment)仪表板是评估研发效能的重要工具。然而在实际使用过程中,部分面板的SQL查询性能问题逐渐暴露出来,特别是"Overall DORA Metrics"和"Change Failure Rate"这两个面板,查询执行时间长达30秒以上,严重影响用户体验。
问题诊断
通过分析原始SQL查询,我们发现性能瓶颈主要出现在以下方面:
- 全表连接问题:查询中对incidents和cicd_deployment_commits表进行了无条件连接(ON 1=1),导致产生了笛卡尔积
- 无效数据扫描:查询没有利用项目筛选和时间范围过滤,处理了大量不必要的数据
- 聚合计算方式:直接在连接后的海量数据上执行COUNT聚合,计算效率低下
具体来看,incidents表有3193条记录,cicd_deployment_commits表有177462条记录,两者无条件连接后会产生约5.67亿条中间结果(3193×177462),这解释了为何查询耗时长达31秒。
优化方案
针对上述问题,我们提出以下优化策略:
- 预聚合计数:先对各个表分别执行COUNT操作,再合并结果,避免处理海量中间数据
- 添加必要过滤条件:通过project_mapping表关联,只统计指定项目的数据
- 应用时间范围过滤:利用Grafana的$__timeFilter宏,只处理相关时间段内的数据
优化后的SQL查询结构如下:
SELECT
CASE
WHEN i.cnt = 0 AND cdc.cnt = 0 THEN 'No All'
WHEN i.cnt = 0 THEN 'No Incidents'
WHEN cdc.cnt = 0 THEN 'No Deployments'
END AS is_collected
FROM
(SELECT COUNT(*) AS cnt FROM incidents i
JOIN project_mapping pm ON i.scope_id = pm.row_id AND pm.table = i.table
WHERE pm.project_name IN (${project}) AND $__timeFilter(i.created_date)
) AS i
LEFT JOIN (
SELECT COUNT(*) AS cnt FROM cicd_deployment_commits cdc
JOIN project_mapping pm ON cdc.cicd_scope_id = pm.row_id AND pm.table = 'cicd_scopes'
WHERE pm.project_name IN (${project}) AND $__timeFilter(cdc.finished_date)
) AS cdc ON 1 = 1
优化效果
经过上述优化后,查询性能得到显著提升:
- 执行时间:从原来的31秒降低到0.02秒,提升约1500倍
- 资源消耗:避免了不必要的全表扫描和笛卡尔积计算
- 结果准确性:通过项目和时间过滤,确保统计结果与用户当前视图一致
最佳实践建议
基于此次优化经验,我们总结出以下DevLake仪表板开发的最佳实践:
- 避免无条件连接:特别是对于大表,应该始终指定合理的连接条件
- 尽早过滤数据:在子查询中就应用项目筛选和时间范围限制
- 合理使用预聚合:对于计数类操作,先在小范围内聚合再合并结果
- 利用Grafana宏:$__timeFilter等宏可以自动应用仪表板的时间范围设置
- 定期审查查询性能:随着数据量增长,需要定期检查并优化现有查询
这些优化原则不仅适用于DORA仪表板,也可以推广到DevLake中的其他数据展示场景,帮助开发者构建更高效、更稳定的数据可视化解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869