Protpardelle开源项目安装与使用指南
2024-09-12 04:07:02作者:谭伦延
Protpardelle是一个基于扩散模型的全原子蛋白质生成器,旨在通过先进的机器学习技术设计和预测蛋白质结构。此教程将引导您了解项目结构,启动文件以及配置文件的使用,以便您能够顺利地在自己的研究或开发中应用此工具。
1. 项目目录结构及介绍
Protpardelle的项目结构组织有序,便于开发者和使用者理解与操作。以下是其主要目录及其大致内容:
- ProteinDesignLab/protpardelle/
├── checkpoints/ # 模型权重存储位置
├── configs/ # 配置文件夹,包括环境配置、训练参数等
├── environment.yml # Conda环境配置文件
├── backbone.yml # 背景模型配置
├── allatom.yml # 全原子模型配置
├── core/ # 核心代码库,包含主要逻辑和函数实现
├── draw_samples.py # 样本抽取的主要脚本,用于生成蛋白质结构
├── evaluation.py # 评估相关代码
├── inference.py # 推理过程的实现
├── models/ # 模型架构定义
├── modules/ # 功能模块
├── protpardelle_pymol.py # 在PyMOL中的集成脚本
├── README.md # 项目说明文档
├── sampling.py # 样本生成的辅助逻辑
└── ... # 更多支持文件和依赖项
2. 项目启动文件介绍
主要启动文件:draw_samples.py
这个脚本是用户进行蛋白质结构生成的核心入口。通过它,您可以根据指定的条件(如长度范围、是否是全原子模型)来抽样生成新的蛋白质结构。命令行参数允许高度定制化,包括但不限于蛋白质长度、模型类型(全原子或仅骨架)、采样数量等。
其他重要文件
protpardelle_pymol.py: 提供了在PyMol内部直接调用Protpardelle的功能,使用户能够在图形界面下交互式设计蛋白质。train.py: 训练自定义模型时使用的脚本,发布后将会包含完整的训练代码。
3. 项目的配置文件介绍
环境配置 (environment.yml)
位于configs下的environment.yml文件用于设置项目的运行环境,通过Conda可以方便创建一个包含所有必需库的虚拟环境。用户执行conda env create -f configs/environment.yml即可自动搭建好开发环境。
模型与运行配置 (backbone.yml, allatom.yml, seqdes.yml)
这些文件定义了模型训练和运行的具体配置。例如,backbone.yml和allatom.yml分别配置背景模型和全原子模型的训练参数,包括但不限于数据集路径、模型超参数、批次大小等。调整这些配置可以让您根据不同的需求来微调模型的行为。
使用示例
为了快速开始,您通常只需关注如何调用draw_samples.py并配置相应的环境。比如,生成一系列特定条件的蛋白质结构样本,可以通过修改配置文件或直接在命令行指定参数来实现。
本指南提供了Protpardelle项目的基本导航,通过遵循上述步骤,您应能轻松上手并利用该工具进行蛋白质结构的设计与探索。请注意,随着项目的更新,具体细节可能会有所变化,建议参考最新的官方文档或源码注释获取最新信息。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
340
404
React Native鸿蒙化仓库
JavaScript
302
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247