Protpardelle: 全原子蛋白质生成模型使用指南
项目介绍
Protpardelle 是一个基于扩散模型的全原子蛋白质结构生成工具。该模型能够代表所有侧链状态作为一个“叠加”态,从而在蛋白质设计中提供了一种创新的方法。它适用于无条件和条件性蛋白质设计,支持从头生成具有特定属性或结合特定配体的蛋白质结构。项目由 ProteinDesignLab 开发,并且其源码托管于 GitHub,旨在促进蛋白质结构设计的研究与应用。
项目快速启动
环境配置
首先,你需要安装 Conda 环境,然后创建并激活 Protpardelle 的环境:
conda env create -f configs/environment.yml
conda activate delle
注意到,你还需下载并置于相同目录下的 ProteinMPNN 仓库,用于协同工作。此外,调整配置文件中的路径以指向正确的位置。
使用示例
在线WebApp体验
你可以通过访问 Hugging Face WebApp 直接在线使用 Protpardelle,无需本地安装。
PyMOL 中的设计
将 protpardelle_pymol.py 文件下载到你的电脑,然后在 PyMol 中加载执行此脚本。例如,对名为 my_pdb.pdb 的结构进行部分残基重新设计,可以运行如下命令:
load protpardelle_pymol.py
protpardelle my_pdb.pdb 0-25 70-80
命令行样本生成
若要无条件地生成长度在50到60之间(步长为5)的蛋白质结构,每长度产生1个样本,可执行:
python draw_samples.py --type allatom --minlen 50 --maxlen 60 --steplen 5 --perlen 1
应用案例和最佳实践
Protpardelle 能够应用于多个场景,包括但不限于:
- 无条件设计:探索新的蛋白质折叠结构。
- 条件性设计:基于现有蛋白结构进行改造,比如特定活性位点的突变设计。
- 药物发现:设计与特定靶标紧密结合的肽段。
- 教育与研究:作为教学工具演示蛋白质结构变化的可能性。
最佳实践是先从简单的无条件设计开始,熟悉工具之后再尝试更复杂的条件性设计任务,利用提供的示例脚本来理解不同参数如何影响设计结果。
典型生态项目
虽然Protpardelle本身构成了一个独特的生态系统部件,其与蛋白质结构预测和设计领域的其他开源工具如Rosetta和DeepMind的AlphaFold合作,能够构成更广泛的应用生态。社区成员可以通过贡献自己的训练数据集、开发新的条件设计算法或是优化现有的模型架构来扩展这一生态。
以上便是Protpardelle的基本使用指南。深入学习和高级定制则要求进一步查阅项目文档和参与社区讨论,以便充分利用这一强大的蛋白质设计工具。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00