探索AdaLAM:重审手工打造的异常检测
2024-05-21 05:52:17作者:霍妲思

在计算机视觉领域,局部特征匹配是许多关键流程的基础,包括结构光谱成像(Structure-from-Motion)、SLAM和视觉定位等。然而,由于描述符的局限性,原始匹配往往充斥着大量的异常值。在这种背景下,AdaLAM应运而生,这是一款集最佳实践于一体的实时异常过滤器,通过搜索图像对应关系中的显著局部仿射模式来识别内点。
在CVPR 2020年举行的Image Matching Challenge中,AdaLAM在8000个关键点类别中取得了第二名的成绩,证明了其与深度学习方法的竞争力。点击此处可观看关于AdaLAM和挑战提交的邀请演讲。
项目介绍
AdaLAM是一个完整的PyTorch实现,建议在CUDA设备上运行以获得最佳性能,同时也支持CPU执行。我们提供了一个示例脚本,用于使用AdaLAM进行COLMAP重建匹配。这个项目的主旨是作为一个强大的经典基线,方便进行比较测试。
技术分析
AdaLAM的核心在于其手工地检测异常值,通过集成多个最佳实践到一个高效且有效的框架。它利用仿射模式来识别可靠匹配,这种方法无需依赖复杂的深度学习模型,却能与之相媲美。
应用场景
- 结构光谱成像(SFM):在构建3D场景模型时,AdaLAM可以帮助去除不一致的匹配,提高重建准确性。
- SLAM(Simultaneous Localization And Mapping):实时定位和建图中,精确的特征匹配至关重要,AdaLAM可以优化这一过程。
- 视觉定位:在物体或环境的精确定位中,过滤出噪声匹配,提升定位精度。
项目特点
- 高效: 集成了最佳实践,实现了实时处理。
- 易用: 提供完整的PyTorch实现,并已集成到kornia库中,直接调用即可。
- 灵活性: 支持GPU和CPU执行,适应不同硬件条件。
- 基准: 作为对比测试的标准,有助于其他算法的开发和评估。
安装与使用
要使用AdaLAM,你需要Python3.7环境以及PyTorch和tqdm。详细安装步骤可在项目README中找到。一旦设置完毕,可以直接调用AdalamFilter类进行匹配和过滤操作。
from adalam import AdalamFilter
matcher = AdalamFilter()
matches = matcher.match_and_filter(
k1=keypoints_of_source_image, k2=keypoints_of_destination_image,
o1=orientations_of_source_image, o2=orientations_of_destination_image,
d1=descriptors_of_source_image, d2=descriptors_of_destination_image,
s1=scales_of_source_image, s2=scales_of_destination_image,
im1shape=shape_of_source_image, im2shape=shape_of_destination_image).cpu().numpy()
想要了解更多示例和详细信息,可参考项目中的文档和例子。
如果你发现这个项目或论文有帮助,请考虑引用我们的研究:
@inproceedings{cavalli2020handcrafted,
title={Handcrafted Outlier Detection Revisited},
author={Cavalli, Luca and Larsson, Viktor and Oswald, Martin Ralf and Sattler, Torsten and Pollefeys, Marc},
booktitle={European Conference on Computer Vision},
year={2020}}
总而言之,AdaLAM以其简洁、高效的解决方案为计算机视觉领域的特征匹配问题带来了新的可能。无论你是学术研究人员还是应用开发者,它都是值得尝试的一款强大工具。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
272
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
195
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692