首页
/ 探索AdaLAM:重审手工打造的异常检测

探索AdaLAM:重审手工打造的异常检测

2024-05-21 05:52:17作者:霍妲思

AdaLAM Teaser

在计算机视觉领域,局部特征匹配是许多关键流程的基础,包括结构光谱成像(Structure-from-Motion)、SLAM和视觉定位等。然而,由于描述符的局限性,原始匹配往往充斥着大量的异常值。在这种背景下,AdaLAM应运而生,这是一款集最佳实践于一体的实时异常过滤器,通过搜索图像对应关系中的显著局部仿射模式来识别内点。

在CVPR 2020年举行的Image Matching Challenge中,AdaLAM在8000个关键点类别中取得了第二名的成绩,证明了其与深度学习方法的竞争力。点击此处可观看关于AdaLAM和挑战提交的邀请演讲。

项目介绍

AdaLAM是一个完整的PyTorch实现,建议在CUDA设备上运行以获得最佳性能,同时也支持CPU执行。我们提供了一个示例脚本,用于使用AdaLAM进行COLMAP重建匹配。这个项目的主旨是作为一个强大的经典基线,方便进行比较测试。

技术分析

AdaLAM的核心在于其手工地检测异常值,通过集成多个最佳实践到一个高效且有效的框架。它利用仿射模式来识别可靠匹配,这种方法无需依赖复杂的深度学习模型,却能与之相媲美。

应用场景

  • 结构光谱成像(SFM):在构建3D场景模型时,AdaLAM可以帮助去除不一致的匹配,提高重建准确性。
  • SLAM(Simultaneous Localization And Mapping):实时定位和建图中,精确的特征匹配至关重要,AdaLAM可以优化这一过程。
  • 视觉定位:在物体或环境的精确定位中,过滤出噪声匹配,提升定位精度。

项目特点

  1. 高效: 集成了最佳实践,实现了实时处理。
  2. 易用: 提供完整的PyTorch实现,并已集成到kornia库中,直接调用即可。
  3. 灵活性: 支持GPU和CPU执行,适应不同硬件条件。
  4. 基准: 作为对比测试的标准,有助于其他算法的开发和评估。

安装与使用

要使用AdaLAM,你需要Python3.7环境以及PyTorch和tqdm。详细安装步骤可在项目README中找到。一旦设置完毕,可以直接调用AdalamFilter类进行匹配和过滤操作。

from adalam import AdalamFilter

matcher = AdalamFilter()
matches = matcher.match_and_filter(
    k1=keypoints_of_source_image, k2=keypoints_of_destination_image,
    o1=orientations_of_source_image, o2=orientations_of_destination_image,
    d1=descriptors_of_source_image, d2=descriptors_of_destination_image,
    s1=scales_of_source_image, s2=scales_of_destination_image,
    im1shape=shape_of_source_image, im2shape=shape_of_destination_image).cpu().numpy()

想要了解更多示例和详细信息,可参考项目中的文档和例子。

如果你发现这个项目或论文有帮助,请考虑引用我们的研究:

@inproceedings{cavalli2020handcrafted,
  title={Handcrafted Outlier Detection Revisited},
  author={Cavalli, Luca and Larsson, Viktor and Oswald, Martin Ralf and Sattler, Torsten and Pollefeys, Marc},
  booktitle={European Conference on Computer Vision},
  year={2020}}

总而言之,AdaLAM以其简洁、高效的解决方案为计算机视觉领域的特征匹配问题带来了新的可能。无论你是学术研究人员还是应用开发者,它都是值得尝试的一款强大工具。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5