探索AdaLAM:重审手工打造的异常检测
2024-05-21 05:52:17作者:霍妲思

在计算机视觉领域,局部特征匹配是许多关键流程的基础,包括结构光谱成像(Structure-from-Motion)、SLAM和视觉定位等。然而,由于描述符的局限性,原始匹配往往充斥着大量的异常值。在这种背景下,AdaLAM应运而生,这是一款集最佳实践于一体的实时异常过滤器,通过搜索图像对应关系中的显著局部仿射模式来识别内点。
在CVPR 2020年举行的Image Matching Challenge中,AdaLAM在8000个关键点类别中取得了第二名的成绩,证明了其与深度学习方法的竞争力。点击此处可观看关于AdaLAM和挑战提交的邀请演讲。
项目介绍
AdaLAM是一个完整的PyTorch实现,建议在CUDA设备上运行以获得最佳性能,同时也支持CPU执行。我们提供了一个示例脚本,用于使用AdaLAM进行COLMAP重建匹配。这个项目的主旨是作为一个强大的经典基线,方便进行比较测试。
技术分析
AdaLAM的核心在于其手工地检测异常值,通过集成多个最佳实践到一个高效且有效的框架。它利用仿射模式来识别可靠匹配,这种方法无需依赖复杂的深度学习模型,却能与之相媲美。
应用场景
- 结构光谱成像(SFM):在构建3D场景模型时,AdaLAM可以帮助去除不一致的匹配,提高重建准确性。
- SLAM(Simultaneous Localization And Mapping):实时定位和建图中,精确的特征匹配至关重要,AdaLAM可以优化这一过程。
- 视觉定位:在物体或环境的精确定位中,过滤出噪声匹配,提升定位精度。
项目特点
- 高效: 集成了最佳实践,实现了实时处理。
- 易用: 提供完整的PyTorch实现,并已集成到kornia库中,直接调用即可。
- 灵活性: 支持GPU和CPU执行,适应不同硬件条件。
- 基准: 作为对比测试的标准,有助于其他算法的开发和评估。
安装与使用
要使用AdaLAM,你需要Python3.7环境以及PyTorch和tqdm。详细安装步骤可在项目README中找到。一旦设置完毕,可以直接调用AdalamFilter类进行匹配和过滤操作。
from adalam import AdalamFilter
matcher = AdalamFilter()
matches = matcher.match_and_filter(
k1=keypoints_of_source_image, k2=keypoints_of_destination_image,
o1=orientations_of_source_image, o2=orientations_of_destination_image,
d1=descriptors_of_source_image, d2=descriptors_of_destination_image,
s1=scales_of_source_image, s2=scales_of_destination_image,
im1shape=shape_of_source_image, im2shape=shape_of_destination_image).cpu().numpy()
想要了解更多示例和详细信息,可参考项目中的文档和例子。
如果你发现这个项目或论文有帮助,请考虑引用我们的研究:
@inproceedings{cavalli2020handcrafted,
title={Handcrafted Outlier Detection Revisited},
author={Cavalli, Luca and Larsson, Viktor and Oswald, Martin Ralf and Sattler, Torsten and Pollefeys, Marc},
booktitle={European Conference on Computer Vision},
year={2020}}
总而言之,AdaLAM以其简洁、高效的解决方案为计算机视觉领域的特征匹配问题带来了新的可能。无论你是学术研究人员还是应用开发者,它都是值得尝试的一款强大工具。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178