首页
/ 探索AdaLAM:重审手工打造的异常检测

探索AdaLAM:重审手工打造的异常检测

2024-05-21 05:52:17作者:霍妲思

AdaLAM Teaser

在计算机视觉领域,局部特征匹配是许多关键流程的基础,包括结构光谱成像(Structure-from-Motion)、SLAM和视觉定位等。然而,由于描述符的局限性,原始匹配往往充斥着大量的异常值。在这种背景下,AdaLAM应运而生,这是一款集最佳实践于一体的实时异常过滤器,通过搜索图像对应关系中的显著局部仿射模式来识别内点。

在CVPR 2020年举行的Image Matching Challenge中,AdaLAM在8000个关键点类别中取得了第二名的成绩,证明了其与深度学习方法的竞争力。点击此处可观看关于AdaLAM和挑战提交的邀请演讲。

项目介绍

AdaLAM是一个完整的PyTorch实现,建议在CUDA设备上运行以获得最佳性能,同时也支持CPU执行。我们提供了一个示例脚本,用于使用AdaLAM进行COLMAP重建匹配。这个项目的主旨是作为一个强大的经典基线,方便进行比较测试。

技术分析

AdaLAM的核心在于其手工地检测异常值,通过集成多个最佳实践到一个高效且有效的框架。它利用仿射模式来识别可靠匹配,这种方法无需依赖复杂的深度学习模型,却能与之相媲美。

应用场景

  • 结构光谱成像(SFM):在构建3D场景模型时,AdaLAM可以帮助去除不一致的匹配,提高重建准确性。
  • SLAM(Simultaneous Localization And Mapping):实时定位和建图中,精确的特征匹配至关重要,AdaLAM可以优化这一过程。
  • 视觉定位:在物体或环境的精确定位中,过滤出噪声匹配,提升定位精度。

项目特点

  1. 高效: 集成了最佳实践,实现了实时处理。
  2. 易用: 提供完整的PyTorch实现,并已集成到kornia库中,直接调用即可。
  3. 灵活性: 支持GPU和CPU执行,适应不同硬件条件。
  4. 基准: 作为对比测试的标准,有助于其他算法的开发和评估。

安装与使用

要使用AdaLAM,你需要Python3.7环境以及PyTorch和tqdm。详细安装步骤可在项目README中找到。一旦设置完毕,可以直接调用AdalamFilter类进行匹配和过滤操作。

from adalam import AdalamFilter

matcher = AdalamFilter()
matches = matcher.match_and_filter(
    k1=keypoints_of_source_image, k2=keypoints_of_destination_image,
    o1=orientations_of_source_image, o2=orientations_of_destination_image,
    d1=descriptors_of_source_image, d2=descriptors_of_destination_image,
    s1=scales_of_source_image, s2=scales_of_destination_image,
    im1shape=shape_of_source_image, im2shape=shape_of_destination_image).cpu().numpy()

想要了解更多示例和详细信息,可参考项目中的文档和例子。

如果你发现这个项目或论文有帮助,请考虑引用我们的研究:

@inproceedings{cavalli2020handcrafted,
  title={Handcrafted Outlier Detection Revisited},
  author={Cavalli, Luca and Larsson, Viktor and Oswald, Martin Ralf and Sattler, Torsten and Pollefeys, Marc},
  booktitle={European Conference on Computer Vision},
  year={2020}}

总而言之,AdaLAM以其简洁、高效的解决方案为计算机视觉领域的特征匹配问题带来了新的可能。无论你是学术研究人员还是应用开发者,它都是值得尝试的一款强大工具。

登录后查看全文
热门项目推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
54
468
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
879
517
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
180
264
cjoycjoy
一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
359
381
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60