探索图像异常检测的新世界:AnoGAN in TensorFlow
2024-05-24 21:50:10作者:胡唯隽
探索图像异常检测的新世界:AnoGAN in TensorFlow
在这个数字图像时代,数据的完整性与准确性至关重要,特别是在医疗成像、工业检测和安全监控等领域。AnoGAN,全称为Anomaly GAN(异常生成对抗网络),是一个开创性的框架,利用深度学习来检测图像中的异常部分。现在,基于TensorFlow实现的AnoGAN已经开放源代码,为研究者和开发者提供了强大的工具,让我们一起深入了解这个项目并发掘其潜力。
1. 项目介绍
AnoGAN的主要目标是通过训练一个深度卷积生成对抗网络(DCGAN)来学习正常图像模式,并在新的输入中检测出不寻常的部分。模型经过训练后,能够计算未见过的图片的异常得分,从而识别出潜在的异常。这一概念由H. Kim在一场演讲中详细解释,并且已经在TensorFlow平台上得到实现。
2. 技术分析
AnoGAN的核心是DCGAN模型,它包括两个主要组件:生成器和判别器。在训练阶段,生成器尝试创建看起来真实的图像,而判别器则试图区分真实图像和生成的图像。在测试阶段,AnoGAN通过对输入图像进行反向传播找到最优的潜在变量z,以最小化残差损失和歧视损失。这两个损失相加形成总损失,用于评估图像的异常程度。
3. 应用场景
AnoGAN的应用广泛,例如:
- 医疗影像:在X光片或MRI扫描中识别肿瘤或其他异常结构。
- 制造业:在生产线上检测产品质量问题或设备故障。
- 安全监控:在视频流中发现不寻常的行为或事件。
4. 项目特点
- 简单易用:提供了详细的文件描述,用户可以轻松下载所需的数据集并运行示例代码。
- 可扩展性:支持自定义数据集,只需将图片添加到指定目录即可开始训练。
- 高效检测:通过综合考虑残留损失和歧视损失,准确地识别图像异常。
- 不断更新:项目维护者正在努力改进功能,如自动阈值设置和性能度量的集成。
开始你的旅程
要使用AnoGAN,首先确保安装了Python 2.7、TensorFlow 0.14+以及其他必要依赖。下载并训练模型后,准备测试图像进行异常检测,只需几行命令即可:
python download.py mnist celebA
python main.py --dataset mnist --input_height=28 --output_height=28 --train
python main.py --dataset celebA --input_height=108 --train --crop
随后,你可以从训练好的模型中检测异常图像:
mkdir ./test_data
... add test images to ./test_data ...
python main.py --dataset DATASET_NAME --input_height=108 --crop --anomaly_test
探索AnoGAN,开启图像异常检测的新篇章,你会发现一个充满无限可能的世界。赶快加入这个项目,贡献你的智慧,帮助我们共同进步吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1