3D高斯喷溅用于实时辐射场渲染——Windows安装与使用指南
2024-10-10 06:48:16作者:蔡丛锟
本指南旨在帮助您了解和设置jonstephens85维护的特定于Windows平台的3D高斯喷溅(Gaussian Splatting)项目,该项目基于论文“3D Gaussian Splatting for Real-Time Radiance Field Rendering”。此版本特别适合那些对命令行操作不熟悉的用户。
目录结构及介绍
以下是gaussian-splatting-Windows
项目的主要目录结构及其大致内容:
gaussian-splatting-Windows/
├── arguments # 参数处理相关文件
├── assets # 资源文件夹,可能包括示例数据或预训练模型
├── gaussian_renderer # 高斯渲染器相关的代码
├── lpipsPyTorch # 使用PyTorch实现的LPIPS损失函数
├── scene # 场景相关的数据或定义
├── submodules # 子模块,可能是其他Git仓库的集成
├── utils # 工具函数集合
├── .gitignore # Git忽略文件列表
├── .gitmodules # 若有子模块,则包含子模块的Git信息
├── LICENSE # 许可证文件
├── README.md # 主要的项目说明文档
├── convert.py # 数据转换脚本
├── environment.yml # Conda环境配置文件
├── full_eval.py # 完整评估脚本
├── metrics.py # 用于计算指标的脚本
├── render.py # 渲染脚本
├── train.py # 训练脚本
重点目录介绍:
gaussian_renderer
: 包含了实现高斯喷溅的核心渲染逻辑。scene
: 存储场景数据,用户可能需要将自己的场景数据放在这里。train.py
和render.py
: 分别是模型训练和渲染的关键脚本。environment.yml
: 用于复现开发环境的Conda配置文件。
启动文件介绍
训练模型
主要的训练过程由train.py
脚本管理。在正确配置好环境和数据之后,运行此脚本即可开始模型的训练流程。它通常接受一些命令行参数来指定训练细节,如数据集路径、模型保存位置等。
python train.py --dataset-path "your_dataset_path"
实时渲染
完成训练后,使用render.py
进行模型的实时渲染。这个脚本也需要适当的参数指向已训练好的模型。
python render.py --model-path "path_to_trained_model"
配置文件介绍
-
environment.yml
: 这个文件定义了一个Conda环境的所有依赖项,确保用户可以一键式创建一个一致的开发或运行环境。通过以下命令激活并安装所有必要的库:conda env create -f environment.yml conda activate <env_name>
-
项目内部配置: 项目的具体配置常在代码中以参数形式体现或者通过特定配置文件(如果存在)。对于此项目,大部分配置可能通过脚本中的命令行参数来设定,例如学习率、批次大小等。确保查阅脚本文档或注释来了解如何自定义这些配置。
通过遵循上述步骤和理解关键元素,您可以有效地部署和利用此3D高斯喷溅项目进行实时辐射场的渲染和评估。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5