Apache Druid深度存储查询优化:实现S3单文件CSV输出
2025-05-16 11:20:00作者:谭伦延
在Apache Druid的大数据分析实践中,深度存储(deep-storage)查询是一个重要功能,它允许用户对冷数据或备份数据进行非实时分析。然而,当前版本中存在一个影响用户体验的技术痛点:当使用MSQ引擎执行"INSERT INTO EXTERN(s3()) AS CSV"查询时,输出结果会被分散存储在S3的多个分区文件中,这给后续的数据处理带来了不便。
技术背景分析
Druid的MSQ(Multi-Stage Query)引擎采用分布式处理架构,查询任务会被自动拆分为多个并行执行的子任务。这种设计虽然提高了查询效率,但也导致了输出结果的碎片化。每个任务节点会生成自己的输出片段,最终在S3上表现为多个小文件。
现有解决方案的局限性
目前用户主要有两种获取查询结果的方式:
- 通过Druid API分页获取:这种方式需要多次请求,对于大数据量查询效率极低,实测1GB数据需要30分钟才能完整获取
- 直接输出到S3:虽然避免了API调用的性能问题,但需要用户自行处理多个碎片文件的合并,增加了使用复杂度
技术优化方案
经过社区讨论和验证,发现可以通过在SQL查询中添加LIMIT子句来优化这一行为。当查询包含LIMIT时,MSQ引擎会将最终阶段合并为单个任务执行,从而产生单一的输出文件。这种方案既保留了分布式查询的性能优势,又简化了结果获取流程。
实现细节
在Druid 29.0.1及更高版本中,用户可以通过以下方式实现单文件输出:
INSERT INTO EXTERN(
's3://your-bucket/path',
's3',
'{"credentials":"..."}'
) AS CSV
SELECT * FROM your_table
LIMIT 1000000 -- 设置足够大的限制值
注意事项
- LIMIT值需要足够大以包含所有预期结果
- 单任务执行可能影响超大结果集的性能
- 输出文件大小仍受Druid配置的单个任务输出限制
最佳实践建议
对于生产环境使用,建议:
- 评估结果集大小,合理设置LIMIT值
- 监控单个任务的资源使用情况
- 考虑将超大查询分批执行
- 定期检查新版本中的优化改进
这一优化显著提升了Druid深度存储查询的易用性,使大数据分析结果能够更便捷地与其他系统集成,进一步拓展了Druid在企业数据分析流水线中的应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
205
暂无简介
Dart
629
143
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.62 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
291
103
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
266
仓颉编译器源码及 cjdb 调试工具。
C++
128
858