【亲测免费】 AlphaFold3-PyTorch 使用教程
2026-01-17 08:48:01作者:宣海椒Queenly
项目介绍
AlphaFold3-PyTorch 是一个基于 PyTorch 实现的 AlphaFold3 模型。AlphaFold3 是一个用于预测生物分子结构的高精度模型,该项目的目的是提供一个易于使用和扩展的实现,以便研究人员和开发者可以更方便地进行相关研究。
项目快速启动
安装
首先,确保你已经安装了 PyTorch。然后,通过以下命令安装 AlphaFold3-PyTorch:
pip install alphafold3-pytorch
使用示例
以下是一个简单的使用示例,展示了如何初始化和使用 AlphaFold3 模型:
import torch
from alphafold3_pytorch import Alphafold3
# 初始化模型
alphafold3 = Alphafold3(
dim_atom_inputs=77,
dim_template_feats=44
)
# 模拟输入
seq_len = 16
molecule_atom_lens = torch.randint(1, 3, (2, seq_len))
atom_seq_len = molecule_atom_lens.sum(dim=-1).amax()
atom_inputs = torch.randn(2, atom_seq_len, 77)
atompair_inputs = torch.randn(2, atom_seq_len, atom_seq_len, 5)
additional_molecule_feats = torch.randint(0, 2, (2, seq_len, 5))
additional_token_feats = torch.randn(2, seq_len, 2)
is_molecule_types = torch.randint(0, 2, (2, seq_len, 5)).bool()
is_molecule_mod = torch.randint(0, 2, (2, seq_len, 4)).bool()
molecule_ids = torch.randint(0, 32, (2, seq_len))
template_feats = torch.randn(2, 2, seq_len, seq_len, 44)
template_mask = torch.ones((2, 2)).bool()
msa = torch.randn(2, 7, seq_len, 64)
# 前向传播
output = alphafold3(
atom_inputs,
atompair_inputs,
additional_molecule_feats,
additional_token_feats,
is_molecule_types,
is_molecule_mod,
molecule_ids,
template_feats,
template_mask,
msa
)
# 输出结果形状
print(output.shape)
应用案例和最佳实践
应用案例
AlphaFold3-PyTorch 可以用于多种生物分子结构的预测任务,包括但不限于蛋白质结构预测、蛋白质-蛋白质相互作用预测等。以下是一个简单的应用案例,展示了如何使用 AlphaFold3 模型进行蛋白质结构预测:
# 假设我们有一个蛋白质序列
protein_sequence = "MILVYK"
# 使用 AlphaFold3 模型进行预测
predicted_structure = alphafold3.predict(protein_sequence)
# 输出预测的结构
print(predicted_structure)
最佳实践
- 数据预处理:确保输入数据的质量和格式符合模型要求。
- 模型调优:根据具体任务调整模型参数,以获得最佳性能。
- 结果验证:使用已知的结构数据验证模型的预测结果,确保其准确性。
典型生态项目
AlphaFold3-PyTorch 作为一个开源项目,可以与其他生物信息学工具和库结合使用,形成一个完整的生态系统。以下是一些典型的生态项目:
- PyTorch Geometric:用于处理图结构数据的库,可以与 AlphaFold3-PyTorch 结合使用,进行更复杂的结构分析。
- Biopython:用于处理生物序列数据的库,可以用于数据预处理和结果验证。
- RDKit:用于化学信息学的库,可以用于分子结构的表示和分析。
通过这些生态项目的结合使用,可以进一步扩展 AlphaFold3-PyTorch 的功能和应用范围。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
最新内容推荐
【免费下载】 JDK 8 和 JDK 17 无缝切换及 IDEA 和 【maven下载安装与配置】 DirectX修复工具【亲测免费】 让经典焕发新生:使用 Visual Studio Code 作为 Visual C++ 6.0 编辑器【亲测免费】 抖音直播助手:douyin-live-go 项目推荐【亲测免费】 ActivityManager 使用指南【亲测免费】 使用Docker-Compose部署达梦DEM管理工具(适用于Mac M1系列)【免费下载】 Windows Keepalived:Windows系统上的高可用性解决方案 Matlab物理建模仿真利器——Simscape及其编程语言Simscape Language学习资源推荐【亲测免费】 Windows10安装Hadoop 3.1.3详细教程【亲测免费】 开源项目 gkd-kit/gkd 常见问题解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
487
3.61 K
Ascend Extension for PyTorch
Python
298
332
暂无简介
Dart
738
177
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
270
113
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
467
仓颉编译器源码及 cjdb 调试工具。
C++
149
880
React Native鸿蒙化仓库
JavaScript
296
343
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20