Kibana 开源项目指南
项目介绍
Kibana 是由 Elastic NV 开发的一款强大的数据可视化平台,特别为 Elasticsearch 设计。它允许用户在大量数据集上进行直观的数据探索与分析。作为“Elastic Stack”(原名“ELK Stack”,包括Elasticsearch、Logstash、Kibana)的重要组成部分,Kibana提供图表、地图等多种视觉展示形式,使复杂数据分析变得简单明了。此外,Kibana 也支持Canvas特性,用于创建动态数据驱动的报告和仪表板。通过其灵活且直观的界面,开发者和数据分析师可以轻松构建复杂的可视化和监控他们的数据流。
项目快速启动
要快速启动 Kibana,您首先需要确保已安装好 Node.js 环境。以下是基于最新版 Kibana 的简要步骤:
步骤1:克隆仓库
git clone https://github.com/elastic/kibana.git
cd kibana
步骤2:安装依赖
确保您拥有正确的Node版本后,运行以下命令来安装所有必要的依赖项:
npm ci
步骤3:启动开发服务器
为了启动本地开发环境并查看Kibana,执行以下命令:
npm start
浏览器将自动打开到 http://localhost:5601
,这里是您的Kibana实例。
注意:在生产环境中部署前,请参考官方文档以了解完整的配置和部署指导。
应用案例和最佳实践
Kibana广泛应用于日志分析、业务指标监控、安全分析等多个领域。最佳实践中,建议先定义清晰的数据模型,利用Logstash或Beats进行数据预处理,然后通过Kibana搭建可视化面板以监控关键性能指标(KPIs)。例如,在运维场景中,Kibana可以帮助分析错误日志,快速定位系统异常;在安全分析中,则可以用来识别潜在的入侵行为或异常流量模式。
典型生态项目
- Elasticsearch:作为Kibana的数据存储和检索引擎,是整个Elastic Stack的核心。
- Logstash:数据收集器,负责从多个来源收集数据,处理并发送至Elasticsearch。
- Beats:一组轻量级数据发送器,设计用于从特定类型的源发送数据到Elasticsearch,比如文件beat用于监控日志文件,metricbeat用于收集系统性能指标。
- Canvas: Kibana的一个组件,为高度定制化的数据可视化提供了更多灵活性,适合制作动态报告和故事叙述式数据展现。
Kibana不仅是一个工具,它也是现代数据分析工作流程中的关键部分,通过与其他Elastic Stack组件集成,为企业提供了全面的数据管理和分析解决方案。记得在实际应用中充分利用官方文档和社区资源,以便更好地掌握和应用这些工具。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









