Elastic Stack Docker 快速入门指南
1. 项目介绍
elastic-stack-docker-part-one 是一个开源项目,旨在帮助用户通过 Docker Compose 快速启动和运行 Elastic Stack。Elastic Stack 是一个强大的数据分析和可视化平台,通常包括 Elasticsearch、Logstash、Kibana 和 Beats 等组件。该项目提供了一个预配置的 Docker Compose 文件,使用户能够轻松地在本地环境中部署和测试 Elastic Stack。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Docker
- Docker Compose
2.2 克隆项目
首先,克隆 elastic-stack-docker-part-one 项目到本地:
git clone https://github.com/elkninja/elastic-stack-docker-part-one.git
cd elastic-stack-docker-part-one
2.3 启动 Elastic Stack
使用 Docker Compose 启动 Elastic Stack:
docker-compose up -d
2.4 访问 Kibana
启动完成后,你可以通过浏览器访问 Kibana 界面:
http://localhost:5601
3. 应用案例和最佳实践
3.1 日志管理
Elastic Stack 可以用于集中管理和分析应用程序的日志。通过 Logstash 收集日志,Elasticsearch 存储和索引日志数据,Kibana 提供可视化界面,帮助用户快速定位和分析问题。
3.2 监控和指标分析
使用 Metricbeat 收集系统和应用程序的指标数据,并将其发送到 Elasticsearch。Kibana 可以创建仪表板,实时监控系统的健康状况和性能指标。
3.3 安全分析
Elastic Stack 可以用于安全信息和事件管理(SIEM)。通过收集和分析安全日志,用户可以快速识别和响应潜在的安全威胁。
4. 典型生态项目
4.1 Elasticsearch
Elasticsearch 是一个分布式搜索和分析引擎,用于存储和检索大量数据。它是 Elastic Stack 的核心组件。
4.2 Logstash
Logstash 是一个数据处理管道,用于收集、处理和转发日志和事件数据。它可以从各种来源收集数据,并将其发送到 Elasticsearch 或其他存储系统。
4.3 Kibana
Kibana 是一个数据可视化工具,用于分析和可视化 Elasticsearch 中的数据。它提供了丰富的图表和仪表板,帮助用户理解和分析数据。
4.4 Beats
Beats 是一组轻量级数据发送器,用于收集各种类型的数据,如日志、指标和网络数据。它们可以将数据发送到 Elasticsearch 或 Logstash 进行进一步处理。
通过 elastic-stack-docker-part-one 项目,你可以快速搭建和测试这些组件,探索 Elastic Stack 的强大功能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00