Sei链EVM RPC中eth_getBlockReceipts方法的异常分析与修复
在Sei区块链项目的EVM兼容层实现中,开发者发现了一个关于eth_getBlockReceipts RPC方法的异常行为。这个bug会导致在某些特定区块高度调用该方法时返回错误,而单独查询交易收据却能正常工作。
问题现象
当开发者调用eth_getBlockReceipts方法查询特定区块(如区块高度94407414)时,RPC接口返回错误信息"failed to find transaction in block"。然而,通过以下对比测试可以确认这是一个异常行为:
- 使用eth_getBlockByNumber查询该区块,能正常返回包含5笔交易的数据
- 单独使用eth_getTransactionReceipt查询每笔交易的收据,所有查询都能成功返回
- 但使用eth_getBlockReceipts批量获取整个区块的交易收据时却失败
技术分析
经过Sei开发团队的深入调查,确认这个问题是由交易收据的竞态条件(Race Condition)引起的。在区块链节点处理区块和交易的过程中,可能会出现以下时序问题:
- 区块数据已经写入存储
- 但部分交易的收据尚未完全处理完成
- 当eth_getBlockReceipts方法被调用时,它会尝试批量获取所有交易的收据
- 如果其中有任何一笔交易的收据尚未就绪,整个批量查询就会失败
这种竞态条件在分布式系统中较为常见,特别是在需要处理大量并行写入和读取的场景下。在区块链节点中,区块处理、交易执行和状态更新往往是并行进行的,这就为这类问题创造了条件。
解决方案
Sei开发团队已经针对这个问题提出了两个层面的解决方案:
-
即时修复方案:开发了一个专门的工具用于重放交易收据,这个工具可以帮助节点运营者修复已经受到影响的区块数据。节点运营者可以在自己的RPC节点上运行这个工具来纠正数据不一致的问题。
-
根本性修复:在即将到来的网络升级中,团队会修改底层实现,彻底解决这个竞态条件问题。这将确保交易收据的处理与区块数据的写入保持正确的时序关系。
影响范围
这个问题主要影响:
- 依赖eth_getBlockReceipts方法的应用程序
- 查询特定高度区块的开发者
- 需要批量获取交易收据的场景
值得注意的是,主流的RPC服务提供商(如QuickNode等)已经应用了修复补丁。对于运行自有节点的用户,建议使用官方提供的修复工具处理受影响区块。
最佳实践
对于开发者而言,在当前过渡期可以采取以下策略:
- 对于关键业务逻辑,考虑使用单独的eth_getTransactionReceipt调用替代批量查询
- 监控RPC接口的返回,对错误情况实现自动重试机制
- 关注Sei网络升级公告,及时更新节点软件
这个问题展示了区块链基础设施开发中常见的挑战,也体现了Sei团队对EVM兼容性的持续改进承诺。随着这些修复措施的落地,Sei链的EVM兼容层将提供更加稳定可靠的开发体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00