首页
/ MO-Gymnasium 开源项目教程

MO-Gymnasium 开源项目教程

2024-08-15 17:39:18作者:胡唯隽

项目介绍

MO-Gymnasium 是一个用于多目标强化学习(MORL)的标准化 API 和环境套件。该项目是一个开源的 Python 库,旨在通过提供一个标准的 API 来促进学习算法和环境之间的通信,以及一组符合该 API 的标准环境,从而开发和比较多目标强化学习算法。环境遵循标准的 Gymnasium API,但返回的是向量化奖励作为 numpy 数组。

项目快速启动

安装

首先,通过 pip 安装 MO-Gymnasium:

pip install mo-gymnasium

基本使用

以下是一个简单的示例,展示如何创建环境实例并与其交互:

import gymnasium as gym
import mo_gymnasium as mo_gym
import numpy as np

# 创建环境实例
env = mo_gym.make('minecart-v0')

# 重置环境
obs, info = env.reset()

# 与环境交互
action = your_agent.act(obs)
next_obs, vector_reward, terminated, truncated, info = env.step(action)

# 可选:使用 LinearReward 包装器标量化奖励函数
env = mo_gym.LinearReward(env, weight=np.array([0.8, 0.2, 0.2]))

应用案例和最佳实践

应用案例

MO-Gymnasium 可以应用于多种多目标强化学习场景,例如资源收集、导航和控制问题。一个典型的应用案例是“Minecart”环境,其中代理需要在收集资源和避免障碍之间找到平衡。

最佳实践

  1. 环境选择:根据具体任务选择合适的环境。
  2. 奖励标量化:使用 LinearReward 包装器将向量化奖励标量化,以便于算法处理。
  3. 算法选择:选择适合多目标问题的强化学习算法,如 Pareto Q-Learning 或 NSGA-II。

典型生态项目

Gymnasium

MO-Gymnasium 是基于 Gymnasium API 构建的,Gymnasium 是一个广泛使用的强化学习环境库,提供了大量的标准环境。

MORL-Baselines

MORL-Baselines 是一个与 MO-Gymnasium 配合使用的项目,提供了多种多目标强化学习算法的基准实现,方便用户进行比较和选择。

通过以上内容,您可以快速了解并开始使用 MO-Gymnasium 项目,探索多目标强化学习的广阔领域。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-CasesHarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4