Super-Gradients项目中YoloNAS模型评估问题解析
问题背景
在使用Super-Gradients项目中的YoloNAS模型时,部分开发者尝试通过Ultralytics框架来评估模型性能,这导致了兼容性问题。本文将从技术角度分析这一问题,并提供正确的评估方法。
错误现象分析
当开发者尝试使用Ultralytics框架加载YoloNAS模型时,会出现两种典型错误:
-
属性缺失错误:
AttributeError: 'YoloNAS_S' object has no attribute 'model'这表明Ultralytics框架无法正确解析YoloNAS模型的结构,因为两个框架的模型保存格式不兼容。
-
键值缺失错误:
KeyError: 'model'这是由于YoloNAS模型的检查点文件结构与Ultralytics期望的结构不匹配导致的。
根本原因
YoloNAS是Super-Gradients项目特有的模型架构,其模型保存格式与Ultralytics框架不兼容。两个框架有着不同的模型序列化方式和检查点结构:
- Super-Gradients使用自定义的模型保存格式
- Ultralytics期望特定的检查点字典结构(包含'model'或'ema'键)
正确的评估方法
在Super-Gradients项目中评估YoloNAS模型性能的正确方式是通过项目提供的专用评估脚本:
-
使用evaluate_checkpoint.py脚本:
该脚本专门设计用于评估Super-Gradients训练出的模型,支持各种指标计算,包括mAP等。
-
使用evaluate_from_recipe.py脚本:
这个脚本提供了更灵活的评估方式,可以通过配置文件指定评估参数。
评估流程建议
对于想要评估YoloNAS模型性能的开发者,建议遵循以下步骤:
- 确保安装了正确版本的Super-Gradients
- 使用项目提供的专用评估脚本
- 准备符合Super-Gradients要求的数据集格式
- 指定正确的模型检查点路径
技术建议
-
框架选择:评估模型时应使用训练时相同的框架,避免跨框架兼容性问题。
-
模型格式:了解不同框架的模型序列化方式差异,有助于避免类似问题。
-
评估指标:Super-Gradients提供了丰富的评估指标实现,直接使用可以获得最准确的结果。
总结
跨框架使用深度学习模型时,兼容性问题很常见。对于YoloNAS这样的专用模型,最佳实践是使用原生框架Super-Gradients提供的评估工具。这不仅能避免技术问题,还能确保评估结果的准确性和可靠性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00