AWS Deep Learning Containers发布PyTorch 2.4.0训练镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署深度学习工作负载。这些容器镜像支持在Amazon EC2实例、Amazon ECS和Amazon EKS等云服务上运行,大大简化了深度学习环境的配置过程。
近日,AWS Deep Learning Containers项目发布了基于PyTorch 2.4.0框架的新版本训练镜像,这些镜像针对不同硬件环境进行了优化,包括CPU和GPU版本,为深度学习开发者提供了更多选择。
镜像版本概览
本次发布的PyTorch训练镜像主要包含两个版本:
-
CPU版本:基于Ubuntu 22.04操作系统,预装了Python 3.11环境,支持在CPU计算环境下运行PyTorch 2.4.0训练任务。
-
GPU版本:同样基于Ubuntu 22.04和Python 3.11,但针对CUDA 12.4进行了优化,支持在NVIDIA GPU上加速PyTorch训练任务。
关键软件包版本
这两个镜像都预装了深度学习开发中常用的软件包和工具:
-
PyTorch生态:包括torch 2.4.0、torchvision 0.19.0和torchaudio 2.4.0,这些版本相互兼容,确保了框架的稳定性。
-
数据处理与分析:预装了numpy 1.26.4、pandas 2.2.3和scipy 1.14.1等科学计算库,以及scikit-learn 1.5.2机器学习库。
-
计算机视觉:包含opencv-python 4.10.0.84和Pillow 11.0.0等图像处理库。
-
自然语言处理:集成了spacy 3.7.5等NLP工具。
-
开发工具:预装了emacs编辑器、AWS CLI工具和MPI支持等开发环境组件。
技术特点
-
Python 3.11支持:新版本镜像采用了Python 3.11作为默认解释器,相比旧版本提供了更好的性能和内存效率。
-
CUDA 12.4优化:GPU版本针对最新的CUDA 12.4进行了优化,充分利用了NVIDIA GPU的计算能力。
-
Ubuntu 22.04基础:基于长期支持的Ubuntu 22.04系统,确保了系统的稳定性和安全性。
-
预装常用工具:除了深度学习框架外,还预装了开发过程中常用的工具和库,减少了环境配置的时间。
适用场景
这些预配置的容器镜像特别适合以下场景:
- 需要快速搭建PyTorch训练环境的开发者
- 希望在AWS云平台上部署深度学习工作负载的团队
- 需要标准化开发环境的企业
- 希望利用最新PyTorch 2.4.0特性的研究人员
AWS Deep Learning Containers的这些更新为深度学习开发者提供了更加便捷、高效的开发环境,有助于加速模型训练和部署过程。通过使用这些预配置的容器镜像,开发者可以专注于模型开发本身,而不必花费大量时间在环境配置上。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00