AWS Deep Learning Containers发布PyTorch 2.4.0训练镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署深度学习工作负载。这些容器镜像支持在Amazon EC2实例、Amazon ECS和Amazon EKS等云服务上运行,大大简化了深度学习环境的配置过程。
近日,AWS Deep Learning Containers项目发布了基于PyTorch 2.4.0框架的新版本训练镜像,这些镜像针对不同硬件环境进行了优化,包括CPU和GPU版本,为深度学习开发者提供了更多选择。
镜像版本概览
本次发布的PyTorch训练镜像主要包含两个版本:
- 
CPU版本:基于Ubuntu 22.04操作系统,预装了Python 3.11环境,支持在CPU计算环境下运行PyTorch 2.4.0训练任务。
 - 
GPU版本:同样基于Ubuntu 22.04和Python 3.11,但针对CUDA 12.4进行了优化,支持在NVIDIA GPU上加速PyTorch训练任务。
 
关键软件包版本
这两个镜像都预装了深度学习开发中常用的软件包和工具:
- 
PyTorch生态:包括torch 2.4.0、torchvision 0.19.0和torchaudio 2.4.0,这些版本相互兼容,确保了框架的稳定性。
 - 
数据处理与分析:预装了numpy 1.26.4、pandas 2.2.3和scipy 1.14.1等科学计算库,以及scikit-learn 1.5.2机器学习库。
 - 
计算机视觉:包含opencv-python 4.10.0.84和Pillow 11.0.0等图像处理库。
 - 
自然语言处理:集成了spacy 3.7.5等NLP工具。
 - 
开发工具:预装了emacs编辑器、AWS CLI工具和MPI支持等开发环境组件。
 
技术特点
- 
Python 3.11支持:新版本镜像采用了Python 3.11作为默认解释器,相比旧版本提供了更好的性能和内存效率。
 - 
CUDA 12.4优化:GPU版本针对最新的CUDA 12.4进行了优化,充分利用了NVIDIA GPU的计算能力。
 - 
Ubuntu 22.04基础:基于长期支持的Ubuntu 22.04系统,确保了系统的稳定性和安全性。
 - 
预装常用工具:除了深度学习框架外,还预装了开发过程中常用的工具和库,减少了环境配置的时间。
 
适用场景
这些预配置的容器镜像特别适合以下场景:
- 需要快速搭建PyTorch训练环境的开发者
 - 希望在AWS云平台上部署深度学习工作负载的团队
 - 需要标准化开发环境的企业
 - 希望利用最新PyTorch 2.4.0特性的研究人员
 
AWS Deep Learning Containers的这些更新为深度学习开发者提供了更加便捷、高效的开发环境,有助于加速模型训练和部署过程。通过使用这些预配置的容器镜像,开发者可以专注于模型开发本身,而不必花费大量时间在环境配置上。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00