首页
/ AWS Deep Learning Containers发布PyTorch 2.4.0训练镜像

AWS Deep Learning Containers发布PyTorch 2.4.0训练镜像

2025-07-06 01:59:41作者:殷蕙予

AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署深度学习工作负载。这些容器镜像支持在Amazon EC2实例、Amazon ECS和Amazon EKS等云服务上运行,大大简化了深度学习环境的配置过程。

近日,AWS Deep Learning Containers项目发布了基于PyTorch 2.4.0框架的新版本训练镜像,这些镜像针对不同硬件环境进行了优化,包括CPU和GPU版本,为深度学习开发者提供了更多选择。

镜像版本概览

本次发布的PyTorch训练镜像主要包含两个版本:

  1. CPU版本:基于Ubuntu 22.04操作系统,预装了Python 3.11环境,支持在CPU计算环境下运行PyTorch 2.4.0训练任务。

  2. GPU版本:同样基于Ubuntu 22.04和Python 3.11,但针对CUDA 12.4进行了优化,支持在NVIDIA GPU上加速PyTorch训练任务。

关键软件包版本

这两个镜像都预装了深度学习开发中常用的软件包和工具:

  • PyTorch生态:包括torch 2.4.0、torchvision 0.19.0和torchaudio 2.4.0,这些版本相互兼容,确保了框架的稳定性。

  • 数据处理与分析:预装了numpy 1.26.4、pandas 2.2.3和scipy 1.14.1等科学计算库,以及scikit-learn 1.5.2机器学习库。

  • 计算机视觉:包含opencv-python 4.10.0.84和Pillow 11.0.0等图像处理库。

  • 自然语言处理:集成了spacy 3.7.5等NLP工具。

  • 开发工具:预装了emacs编辑器、AWS CLI工具和MPI支持等开发环境组件。

技术特点

  1. Python 3.11支持:新版本镜像采用了Python 3.11作为默认解释器,相比旧版本提供了更好的性能和内存效率。

  2. CUDA 12.4优化:GPU版本针对最新的CUDA 12.4进行了优化,充分利用了NVIDIA GPU的计算能力。

  3. Ubuntu 22.04基础:基于长期支持的Ubuntu 22.04系统,确保了系统的稳定性和安全性。

  4. 预装常用工具:除了深度学习框架外,还预装了开发过程中常用的工具和库,减少了环境配置的时间。

适用场景

这些预配置的容器镜像特别适合以下场景:

  • 需要快速搭建PyTorch训练环境的开发者
  • 希望在AWS云平台上部署深度学习工作负载的团队
  • 需要标准化开发环境的企业
  • 希望利用最新PyTorch 2.4.0特性的研究人员

AWS Deep Learning Containers的这些更新为深度学习开发者提供了更加便捷、高效的开发环境,有助于加速模型训练和部署过程。通过使用这些预配置的容器镜像,开发者可以专注于模型开发本身,而不必花费大量时间在环境配置上。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
24
7
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.3 K
flutter_flutterflutter_flutter
暂无简介
Dart
621
140
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
263
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
793
77