AWS Deep Learning Containers发布PyTorch 2.4.0训练镜像
2025-07-06 23:04:51作者:裘旻烁
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预配置深度学习环境容器镜像,它集成了主流深度学习框架及其依赖项,帮助开发者快速部署和运行深度学习工作负载。这些容器镜像经过优化,可直接在Amazon EC2实例上运行,支持CPU和GPU加速。
最新版本特性
AWS近日发布了PyTorch 2.4.0训练镜像的两个重要版本,分别针对CPU和GPU计算环境进行了优化。这两个镜像基于Ubuntu 22.04操作系统,使用Python 3.11作为基础环境。
CPU版本镜像
CPU版本镜像(2.4.0-cpu-py311-ubuntu22.04-ec2)主要特点包括:
- 预装PyTorch 2.4.0 CPU版本
- 包含NumPy 1.26.4、SciPy 1.14.1等科学计算基础库
- 集成scikit-learn 1.5.2机器学习库
- 支持OpenCV 4.10.0计算机视觉处理
- 包含pandas 2.2.3数据分析工具
- 预装spaCy 3.7.5自然语言处理库
GPU版本镜像
GPU版本镜像(2.4.0-gpu-py311-cu124-ubuntu22.04-ec2)在CPU版本基础上增加了对CUDA 12.4的支持:
- 预装PyTorch 2.4.0 CUDA 12.4版本
- 包含NVIDIA cuBLAS 12.4和cuDNN 9等GPU加速库
- 集成Apex 0.1混合精度训练工具
- 支持Ninja 1.11.1构建系统
技术细节
两个镜像都基于Ubuntu 22.04 LTS构建,确保系统稳定性和长期支持。镜像中预装了常用的开发工具,如Emacs编辑器,方便开发者直接在容器内进行代码编辑。
在Python包管理方面,镜像使用pip安装了大量常用的机器学习相关库,包括:
- PyTorch生态相关:torchvision 0.19.0、torchaudio 2.4.0
- 数据处理:pandas、h5py
- 计算机视觉:opencv-python、Pillow
- 自然语言处理:spaCy
- 分布式训练:mpi4py
这些预装库经过严格测试,确保版本兼容性和稳定性,开发者可以直接使用而无需担心依赖冲突问题。
使用场景
AWS Deep Learning Containers的PyTorch训练镜像适用于多种深度学习场景:
- 快速原型开发:预装环境让开发者可以立即开始模型训练
- 生产环境部署:经过优化的容器镜像确保训练过程稳定高效
- 教学与研究:统一的环境配置便于复现实验结果
- 大规模分布式训练:支持MPI等分布式训练框架
总结
AWS Deep Learning Containers提供的PyTorch 2.4.0训练镜像为开发者提供了开箱即用的深度学习环境,大幅降低了环境配置的复杂度。无论是进行CPU还是GPU加速的训练任务,开发者都可以快速启动项目,专注于模型开发而非环境搭建。这些镜像经过AWS官方优化和测试,在Amazon EC2实例上能够发挥最佳性能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146