Paddle-Lite在ARM设备上实现表格检测的技术解析
2025-05-31 02:41:58作者:胡唯隽
背景介绍
Paddle-Lite作为PaddlePaddle的轻量化推理引擎,在移动端和嵌入式设备上有着广泛的应用。近期有开发者尝试在ARM设备上实现表格检测功能,这涉及到OCR文字检测与表格结构识别的结合应用。
技术实现方案
模型转换与部署
要实现表格检测功能,首先需要将PaddleOCR中的表格识别模型转换为Paddle-Lite支持的格式。根据开发实践,推荐使用以下版本组合:
- Paddle-Lite 2.14rc
- PaddlePaddle 2.6
- PaddleOCR 2.9.1
使用paddle_lite_opt工具可以将原始模型导出为Lite支持的格式。需要注意的是,不同版本的兼容性可能存在差异,开发者反馈在Paddle 2.5上转换成功的模型,在2.6版本上可能存在问题。
模型组成
完整的表格检测系统通常包含以下几个模型组件:
- 文字检测模型(如ch_PP-OCRv3_det_opt.nb)
- 文字识别模型(如ch_PP-OCRv3_rec_opt.nb)
- 表格结构识别模型(如ch_ppstructure_mobile_v2.0_SLANet_infer)
实现路径
对于需要在C++环境下实现的开发者,建议参考以下实现路径:
- 首先理解PaddleOCR中Python实现的表格识别流程(如predict_table.py)
- 研究Paddle-Lite的C++ demo实现方式
- 将Python流程转换为C++实现
开发注意事项
-
版本兼容性:不同版本的PaddlePaddle、PaddleOCR和Paddle-Lite可能存在兼容性问题,建议严格按照推荐版本组合进行开发。
-
推理效果差异:移动端推理结果可能与服务器端存在差异,这可能是由于:
- 模型量化带来的精度损失
- 预处理/后处理实现不一致
- 硬件计算精度差异
-
性能优化:在ARM设备上需要考虑内存占用和计算效率,可以尝试:
- 使用更轻量化的模型
- 优化前后处理流程
- 合理利用多线程
总结
在ARM设备上使用Paddle-Lite实现表格检测是完全可行的,但需要注意模型转换的版本兼容性和实现细节。开发者需要充分理解表格识别的完整流程,并将其适配到Paddle-Lite的C++推理框架中。对于效果差异问题,建议从模型量化、前后处理实现等方面进行排查和优化。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
122
149
暂无简介
Dart
579
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
183
仓颉编译器源码及 cjdb 调试工具。
C++
121
338
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
610
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.19 K