Paddle-Lite在ARM设备上实现表格检测的技术解析
2025-05-31 10:37:52作者:胡唯隽
背景介绍
Paddle-Lite作为PaddlePaddle的轻量化推理引擎,在移动端和嵌入式设备上有着广泛的应用。近期有开发者尝试在ARM设备上实现表格检测功能,这涉及到OCR文字检测与表格结构识别的结合应用。
技术实现方案
模型转换与部署
要实现表格检测功能,首先需要将PaddleOCR中的表格识别模型转换为Paddle-Lite支持的格式。根据开发实践,推荐使用以下版本组合:
- Paddle-Lite 2.14rc
- PaddlePaddle 2.6
- PaddleOCR 2.9.1
使用paddle_lite_opt工具可以将原始模型导出为Lite支持的格式。需要注意的是,不同版本的兼容性可能存在差异,开发者反馈在Paddle 2.5上转换成功的模型,在2.6版本上可能存在问题。
模型组成
完整的表格检测系统通常包含以下几个模型组件:
- 文字检测模型(如ch_PP-OCRv3_det_opt.nb)
- 文字识别模型(如ch_PP-OCRv3_rec_opt.nb)
- 表格结构识别模型(如ch_ppstructure_mobile_v2.0_SLANet_infer)
实现路径
对于需要在C++环境下实现的开发者,建议参考以下实现路径:
- 首先理解PaddleOCR中Python实现的表格识别流程(如predict_table.py)
- 研究Paddle-Lite的C++ demo实现方式
- 将Python流程转换为C++实现
开发注意事项
-
版本兼容性:不同版本的PaddlePaddle、PaddleOCR和Paddle-Lite可能存在兼容性问题,建议严格按照推荐版本组合进行开发。
-
推理效果差异:移动端推理结果可能与服务器端存在差异,这可能是由于:
- 模型量化带来的精度损失
- 预处理/后处理实现不一致
- 硬件计算精度差异
-
性能优化:在ARM设备上需要考虑内存占用和计算效率,可以尝试:
- 使用更轻量化的模型
- 优化前后处理流程
- 合理利用多线程
总结
在ARM设备上使用Paddle-Lite实现表格检测是完全可行的,但需要注意模型转换的版本兼容性和实现细节。开发者需要充分理解表格识别的完整流程,并将其适配到Paddle-Lite的C++推理框架中。对于效果差异问题,建议从模型量化、前后处理实现等方面进行排查和优化。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5