Starlette项目中WebSocket连接断开异常处理指南
在基于Starlette框架开发WebSocket应用时,开发者可能会遇到一个常见的运行时错误:"Cannot call 'receive' once a disconnect message has been received"。这个问题通常发生在WebSocket连接断开时,但开发者没有正确处理断开逻辑的情况下。
问题现象
当客户端突然断开WebSocket连接(例如用户关闭浏览器标签或刷新页面),服务器端可能会出现以下错误堆栈:
RuntimeError: Cannot call "receive" once a disconnect message has been received.
这个错误表明在已经接收到断开消息后,代码仍然尝试调用WebSocket的receive方法。
问题根源
该问题通常由以下两种开发模式引起:
-
错误使用WebSocketEndpoint类:开发者直接在on_connect方法中使用websocket.iter_json()或类似方法,而没有使用框架提供的on_receive回调。
-
任务取消处理不当:在使用任务组(TaskGroup)或异步任务时,没有正确处理连接断开时的任务取消逻辑。
最佳实践解决方案
方案一:正确使用WebSocketEndpoint类
Starlette框架为WebSocket提供了专门的WebSocketEndpoint基类,它已经封装了正确的消息处理循环。开发者应该重写其三个关键方法:
class ChatRoomWebsocket(WebSocketEndpoint):
async def on_connect(self, websocket: WebSocket):
await websocket.accept()
# 初始化工作
async def on_receive(self, websocket: WebSocket, data):
# 处理接收到的消息
pass
async def on_disconnect(self, websocket: WebSocket, close_code: int):
# 清理资源
pass
方案二:结合Broadcaster的正确实现
当需要与Broadcaster等消息广播系统集成时,可以这样实现:
class ChatRoomWebsocket(WebSocketEndpoint):
async def on_connect(self, websocket: WebSocket):
await websocket.accept()
self._listener_task = asyncio.create_task(self.chatroom_ws_sender(websocket))
async def on_receive(self, websocket: WebSocket, data):
await broadcast.publish(channel="chatroom", message=data)
async def chatroom_ws_sender(self, websocket) -> None:
async with broadcast.subscribe(channel="chatroom") as subscriber:
async for event in subscriber:
await websocket.send_text(event.message)
async def on_disconnect(self, websocket: WebSocket, close_code: int) -> None:
if hasattr(self, '_listener_task'):
self._listener_task.cancel()
关键注意事项
-
不要在on_connect中直接使用iter_json:这会绕过框架的消息循环机制,导致连接状态管理混乱。
-
正确处理异步任务:任何在连接期间创建的长期运行任务都必须在on_disconnect中妥善取消。
-
资源清理:确保在断开连接时释放所有相关资源,如数据库连接、订阅等。
-
异常处理:为可能出现的网络异常添加适当的错误处理逻辑。
总结
通过遵循Starlette框架的设计模式,特别是正确使用WebSocketEndpoint类及其生命周期方法,可以避免大多数WebSocket连接管理问题。对于需要集成消息广播系统的场景,确保在断开连接时正确取消订阅和清理资源是关键。这些最佳实践不仅能解决当前的运行时错误,还能提高WebSocket应用的健壮性和可维护性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00