Mapbox GL JS 在 Jupyter Notebook 中的应用
2024-09-18 20:21:14作者:董宙帆
1. 项目介绍
Mapbox GL JS 是一个高性能、交互式的 WebGL 数据可视化工具,可以直接集成到 Jupyter Notebook 中。mapboxgl-jupyter 项目允许用户在 Python 环境中使用 Mapbox GL JS 进行数据可视化,特别适用于大规模数据集的可视化。该项目基于 Mapbox Vector Tiles 和 WebGL 技术,提供了比传统的基于栅格的 Leaflet 地图库更高的性能。
2. 项目快速启动
安装依赖
首先,确保你已经安装了必要的 Python 库:
pip install mapboxgl pandas jupyter
启动 Jupyter Notebook
在命令行中启动 Jupyter Notebook:
jupyter notebook
导入库并创建可视化
在 Jupyter Notebook 中,导入 mapboxgl-jupyter 库并创建一个简单的可视化:
import os
import pandas as pd
from mapboxgl.utils import create_color_stops, df_to_geojson
from mapboxgl.viz import CircleViz
# 加载示例数据
data_url = 'https://raw.githubusercontent.com/mapbox/mapboxgl-jupyter/master/examples/data/points.csv'
df = pd.read_csv(data_url)
# 获取 Mapbox 访问令牌
token = os.getenv('MAPBOX_ACCESS_TOKEN')
# 创建 GeoJSON 文件
df_to_geojson(df, filename='points.geojson', properties=['Avg Medicare Payments', 'Avg Covered Charges', 'date'], lat='lat', lon='lon', precision=3)
# 生成颜色停止点
color_breaks = [0, 10, 100, 1000, 10000]
color_stops = create_color_stops(color_breaks, colors='YlGnBu')
# 创建可视化对象
viz = CircleViz('points.geojson', access_token=token, height='400px', color_property="Avg Medicare Payments", color_stops=color_stops, center=(-95, 40), zoom=3, below_layer='waterway-label')
# 显示可视化
viz.show()
3. 应用案例和最佳实践
应用案例
- 医疗数据可视化:使用
mapboxgl-jupyter可视化医疗数据,如 Medicare 支付数据,帮助分析不同地区的医疗费用分布。 - 地理数据分析:在地理数据分析中,
mapboxgl-jupyter可以用于可视化地理数据,如人口密度、气候数据等。
最佳实践
- 数据预处理:在使用
mapboxgl-jupyter之前,确保数据已经过适当的预处理,如数据清洗、格式转换等。 - 性能优化:对于大规模数据集,建议使用 WebGL 和 Mapbox Vector Tiles 技术,以提高可视化性能。
- 自定义样式:通过调整颜色停止点、图层顺序等参数,自定义地图样式,以更好地展示数据。
4. 典型生态项目
- Folium:一个基于 Leaflet 的 Python 库,用于创建交互式地图。与
mapboxgl-jupyter相比,Folium 更适合小规模数据集的可视化。 - GeoPandas:一个用于处理地理空间数据的 Python 库,可以与
mapboxgl-jupyter结合使用,进行更复杂的地理数据分析。 - Plotly:一个用于创建交互式图表的 Python 库,支持多种数据可视化类型,包括地图可视化。
通过结合这些生态项目,可以进一步扩展 mapboxgl-jupyter 的功能,满足更复杂的数据可视化需求。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443