PyTorch 安装与使用教程
2024-08-11 12:35:22作者:庞队千Virginia
1. 项目目录结构及介绍
在 https://github.com/pytorch/pytorch.git 的仓库中,PyTorch 的源代码被组织成以下主要目录:
- aten: ATen 是一个低级的 tensor 操作库,它是 PyTorch 基础运算的核心。
- build: 构建脚本和辅助工具存放于此。
- cmake: 使用 CMake 构建 PyTorch 的配置文件。
- concepts: 对 PyTorch 内部概念的描述。
- cpp: C++ 面向 API 和接口的相关代码。
- caffe2: 包含了 Caffe2 的相关组件,现在已被融合到核心 PyTorch 库中。
- distributed: 分布式训练相关的代码。
- doc: 文档和教程的源码。
- examples: 示例项目和教程示例。
- mobile: 用于移动设备(如 Android 和 iOS)的 PyTorch 库。
- torch: 这是 PyTorch 在 Python 中的主要接口,包含了 torch 模块和相关子模块。
- torch/csrc: C++ 和 C 的源代码,用于实现 PyTorch 的底层功能。
- torch/include: 头文件,供其他编译依赖于 PyTorch 的项目使用。
- torch/script: 用于序列化模型和创建 TorchScript 的模块。
- torch/testing: 测试用例和基准测试。
- third_party: 第三方依赖库。
2. 项目的启动文件介绍
由于 PyTorch 是一个库,没有传统意义上的“启动文件”。但是,你可以通过导入 Python 环境中的 torch 模块来开始使用 PyTorch。例如,在 Python 脚本或 Jupyter notebook 中输入以下代码来初始化 PyTorch:
import torch
# 创建一个随机张量
x = torch.randn(5, 3)
print(x)
这段代码首先导入了 torch 模块,然后创建了一个形状为 (5, 3) 的随机张量并打印出来。
3. 项目的配置文件介绍
PyTorch 的构建过程主要依赖于 CMakeLists.txt 文件以及 setup.py 文件。这两个文件分别负责 C++ 库的编译和 Python 包的安装。
-
CMakeLists.txt: 位于项目根目录下,它定义了如何使用 CMake 构建 PyTorch。配置包括设置编译选项、指定库的依赖关系等。
-
setup.py: Python 包管理器 pip 使用这个文件来安装 PyTorch。它定义了包的元数据(如版本号、作者信息)以及如何构建和打包 Python 代码。
要从源代码编译和安装 PyTorch,首先确保已安装了所有依赖项(如 CMake、GCC、CUDA 等),然后运行以下命令:
# 克隆仓库
git clone https://github.com/pytorch/pytorch.git
# 切换到仓库目录
cd pytorch
# 安装所需的 Python 依赖
pip install -r requirements.txt
# 构建并安装 PyTorch
python setup.py develop
以上步骤完成后,你的系统就应该已经准备好了开发 PyTorch 或使用其最新构建的环境。注意,实际编译过程中可能需要根据你的硬件和平台调整 CMake 配置参数。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210