Terragrunt与AWS ACM模块集成问题解析:Route53 Zone ID传递错误
问题背景
在使用Terragrunt调用terraform-aws-modules/acm模块创建SSL证书时,开发者遇到了一个关于Route53 Zone ID传递的验证错误。该问题表现为在证书DNS验证阶段,AWS API返回了参数验证失败的错误,提示Zone ID长度超过32个字符的限制。
错误现象分析
当执行terragrunt apply命令时,系统尝试创建Route53记录以完成证书的DNS验证,但AWS API返回了以下错误:
Error: reading Route 53 Hosted Zone ({"subdomain.domain.ac.uk":"ZXXXXXXXXXXXXXXXXXXX"}): operation error Route 53: GetHostedZone, https response error StatusCode: 400, RequestID: f2fa3d59-1fa2-4b48-8d44-af021930cabc, InvalidInput: 1 validation error detected: Value '{"subdomain.domain.ac.uk":"ZXXXXXXXXXXXXXXXXXXX"}' at 'resourceId' failed to satisfy constraint: Member must have length less than or equal to 32
关键点在于错误信息显示AWS API接收到的不是预期的Zone ID字符串(如ZXXXXXXXXXXXXXXXXXXX),而是一个JSON对象结构{"subdomain.domain.ac.uk":"ZXXXXXXXXXXXXXXXXXXX"}。
根本原因
深入分析后发现,问题根源在于zone_id参数的传递方式。开发者使用了另一个模块(terraform-aws-modules/route53)的输出作为zone_id输入,而该模块的输出结构为映射(Map)类型,而非简单的字符串。
具体表现为:
- 预期输入:
zone_id = "ZXXXXXXXXXXXXXXXXXXX" - 实际输入:
zone_id = {"subdomain.domain.ac.uk":"ZXXXXXXXXXXXXXXXXXXX"}
这种数据结构差异导致AWS API在解析参数时失败,因为它期望接收一个简单的Zone ID字符串,而不是包含域名映射的复杂结构。
解决方案
要解决这个问题,需要确保传递给ACM模块的zone_id是纯字符串格式。有几种可行的解决方法:
-
直接使用字符串值: 如果Zone ID是已知的固定值,可以直接在terragrunt.hcl中硬编码:
zone_id = "ZXXXXXXXXXXXXXXXXXXX" -
提取映射中的值: 当从其他模块获取zone_id时,需要明确提取映射中的具体值:
zone_id = values(dependency.dns.outputs.route53_zone_zone_id)[0] -
修改上游模块输出: 在生成zone_id的模块中,确保输出的是字符串而非映射结构。
经验总结
这个案例揭示了在Terragrunt和Terraform模块集成时需要注意的几个重要方面:
-
数据类型一致性:不同模块间的输入输出必须保持数据类型一致,特别是当使用模块依赖时。
-
调试技巧:使用
--terragrunt-debug参数生成的terragrunt-debug.tfvars.json文件是排查此类问题的有力工具,它能清晰展示最终传递给Terraform的参数结构。 -
模块文档审查:在使用任何Terraform模块前,应仔细阅读其输入输出文档,了解预期的数据类型和结构。
-
渐进式验证:对于复杂的多模块部署,建议采用分阶段验证的方式,先确认各模块单独工作正常,再逐步集成。
通过这个案例,我们认识到在基础设施即代码(IaC)实践中,数据类型和结构的一致性至关重要,特别是在模块间交互时。正确的参数传递方式可以避免许多看似复杂的问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00