MLPerf™ 训练基准参考实现:开启高性能机器学习的新纪元
2024-09-17 09:29:32作者:侯霆垣
项目介绍
MLPerf™ 训练基准参考实现是一个为 MLPerf 训练基准提供的参考实现库。这些实现作为基准实现的起点是有效的,但它们并未经过完全优化,因此不适合用于软件框架或硬件的“真实”性能测量。MLPerf 训练基准旨在为机器学习社区提供一个公平、透明的性能评估标准,帮助研究人员和开发者更好地理解和比较不同硬件和软件配置下的训练性能。
项目技术分析
MLPerf™ 训练基准参考实现涵盖了多个领域的模型,包括图像分类、目标检测、图像分割、图像生成、自然语言处理、大语言模型、推荐系统和图神经网络等。每个参考实现都提供了以下内容:
- 代码实现:在至少一个框架中实现模型。
- Dockerfile:用于在容器中运行基准测试。
- 数据集下载脚本:用于下载适当的训练数据集。
- 训练脚本:用于运行和计时模型训练。
- 文档:详细说明数据集、模型和机器设置。
这些实现使用了多种流行的深度学习框架,如 TensorFlow 和 PyTorch,确保了广泛的兼容性和灵活性。
项目及技术应用场景
MLPerf™ 训练基准参考实现适用于以下场景:
- 学术研究:研究人员可以使用这些参考实现来验证和比较不同硬件和软件配置下的训练性能。
- 工业应用:开发者可以基于这些实现进行优化,以满足特定应用场景下的高性能需求。
- 教育培训:学生和教育工作者可以通过这些实现学习最新的机器学习模型和训练技术。
项目特点
- 多样化的模型支持:涵盖了从图像处理到自然语言处理的多个领域,满足不同应用需求。
- 容器化部署:通过 Docker 容器化部署,简化了环境配置和依赖管理。
- 开源社区驱动:项目鼓励社区贡献,通过问题报告和拉取请求不断改进和优化。
- 透明和公平的基准测试:提供了一个公平、透明的性能评估标准,帮助用户更好地理解和比较不同配置下的训练性能。
MLPerf™ 训练基准参考实现不仅为机器学习社区提供了一个强大的工具,还为高性能计算和深度学习技术的进一步发展奠定了坚实的基础。无论你是研究人员、开发者还是教育工作者,这个项目都值得你深入探索和使用。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
422
3.25 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869