FunASR项目中使用ONNX推理Paraformer模型的问题分析与解决方案
2025-05-24 13:08:30作者:蔡丛锟
问题背景
在语音识别领域,FunASR项目提供了一个强大的端到端语音识别框架。其中,Paraformer模型因其出色的性能而广受欢迎。然而,当用户尝试将预训练的Paraformer模型转换为ONNX格式并进行推理时,遇到了输入参数缺失的错误。
错误现象
用户在使用speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch模型进行ONNX推理时,系统报错提示缺少必要的输入参数bias_embed。错误信息明确指出,当前输入仅包含speech和speech_lengths,但模型运行需要额外的bias_embed参数。
技术分析
模型结构特点
Paraformer模型作为一种先进的语音识别模型,其结构可能包含一些特殊的组件或参数。bias_embed参数的出现表明该模型可能采用了某种偏置嵌入机制,这种机制常用于增强模型对特定领域或场景的适应能力。
ONNX导出机制
ONNX作为一种跨平台的模型表示格式,在导出时需要完整保留模型的所有输入输出特性。当从PyTorch转换为ONNX时,必须确保所有必要的输入参数都被正确识别和处理。
解决方案
最新版本导出方法
FunASR项目团队提供了最新的解决方案,通过AutoModel接口可以更便捷地完成模型导出:
from funasr import AutoModel
model = AutoModel(
model="iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
)
res = model.export(type="onnx", quantize=False)
print(res)
这种方法相比直接使用Paraformer类更加可靠,因为它会自动处理模型转换过程中的各种参数需求。
注意事项
- 版本兼容性:确保使用的FunASR版本足够新,旧版本可能不支持完整的导出功能
- 量化选项:根据实际需求选择是否进行量化(
quantize参数) - 输入预处理:即使成功导出ONNX模型,仍需确保输入音频数据的格式和预处理方式与模型预期一致
最佳实践建议
- 始终使用项目提供的最新API进行模型操作
- 在转换模型前,先确认模型的基本功能在原始框架中正常工作
- 对于复杂的模型结构,考虑分步验证各组件功能
- 关注项目更新日志,及时了解接口变更和功能改进
通过采用上述方法和建议,开发者可以更顺利地完成Paraformer模型的ONNX转换和推理工作,充分发挥这一先进语音识别模型的性能优势。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218