PyDGN 开源项目安装与使用教程
2024-09-11 17:57:11作者:牧宁李
1. 项目目录结构及介绍
PyDGN 是一个基于 Python 的深度图网络框架,专注于简化深度学习在图数据上的实验过程。虽然具体的目录结构未直接提供在引用内容中,一般开源项目如PyDGN可能会遵循以下典型结构:
PyDGN/
│
├── pydgn/ # 核心包,包含了模型、训练、评估等模块
│ ├── data/ # 数据处理相关模块
│ ├── evaluation/ # 评估方法
│ ├── experiment/ # 实验管理代码
│ ├── log/ # 日志记录工具
│ ├── model/ # 模型定义
│ └── training/ # 训练逻辑
│
├── examples/ # 示例配置文件和快速入门示例
│ ├── DATA_CONFIGS/ # 数据配置文件夹
│ └── MODEL_CONFIGS/ # 模型配置文件夹
│
├── requirements.txt # 项目依赖清单
├── setup.py # 安装脚本(可能含有的)
├── README.md # 项目读我文件,包含基本说明
└── LICENSE # 许可证文件,PyDGN 使用 GPLv3 许可
每个模块都服务于特定的目的,比如pydgn.data处理数据预处理,pydgn.model包含模型定义,而examples提供了配置实例以快速上手。
2. 项目的启动文件介绍
PyDGN 不直接通过单一的“启动文件”运行,但提供了命令行接口来便捷地执行任务。主要通过两个命令行工具进行交互:
- pydgn-dataset:用于构建数据集和数据切分。
- pydgn-train:用于训练模型,它需要配置文件来指定模型设置。
例如,初始化一个新的数据集和进行模型训练的基本流程是通过调用这两个命令,并且传入相应的配置文件:
pydgn-dataset --config-file examples/DATA_CONFIGS/config_NCI1.yml
pydgn-train --config-file examples/MODEL_CONFIGS/config_SupToyDGN.yml
3. 项目的配置文件介绍
配置文件是PyDGN的核心部分,分为数据配置(DATA_CONFIGS)和模型配置(MODEL_CONFIGS)两大类。这些YAML文件定义了如何加载数据、划分数据集以及模型的具体参数等。
数据配置文件
数据配置文件通常指定数据集的位置、切分策略(训练、验证、测试)和其他数据预处理选项。例如,config_NCI1.yml可能包括数据集路径、标签信息和是否需要进行随机切分等内容。
# 假设的例子
dataset_name: NCI1
split_strategy: random_split
test_size: 0.2
模型配置文件
模型配置文件详细描述了要训练的深度图网络的架构、优化器的选择、学习率等。比如,在config_SupToyDGN.yml中,用户可以定义模型类型(如GCN、GAT)、层数、每层的神经元数量、损失函数、批次大小等关键参数。
model_type: SupToyDGN
hidden_channels: 64
num_layers: 2
learning_rate: 0.01
确保在实际操作前,依据项目最新的文档调整或创建这些配置文件,以符合你的具体需求和环境设置。此外,考虑到项目的持续更新,具体的文件结构和命令可能会有所变化,因此建议参照项目的GitHub主页或最新文档获取最准确的信息。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
148
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19