GraphCast预训练模型训练时长与内存占用分析
2025-06-04 12:26:19作者:咎竹峻Karen
GraphCast作为谷歌DeepMind推出的全球天气预报模型,其预训练过程涉及复杂的计算资源调配。本文将深入分析GraphCast提供的三种预训练模型的训练时长和内存需求,帮助研究人员更好地规划模型训练。
主要模型训练细节
GraphCast的0.25度ERA5主模型训练过程可分为两个主要阶段:
- 初始单步训练阶段:约需2周时间
- 2-12步退火训练阶段:同样需要约2周时间
整个训练过程在32台TPU v4设备上完成,每台TPU配备32GB内存。值得注意的是,虽然技术上可以在32GB内存的TPU上完成训练,但为了获得更好的训练体验,建议使用内存更大的GPU/TPU设备。
操作模型训练特点
GraphCast的操作模型训练与主模型类似,但增加了一个额外的1AR微调阶段。这个阶段位于初始单步训练和退火训练之间,大约需要额外1天的训练时间。这使得操作模型的总训练时长略长于主模型。
低分辨率模型训练效率
GraphCast还提供了1度分辨率的模型版本,这个低分辨率模型的训练效率显著提高。从数据来看,1度模型的总训练时间仅需约1.5天,远低于高分辨率模型,这为快速原型开发和实验提供了便利。
训练资源建议
基于实际训练经验,对于希望复现或扩展GraphCast模型的研究人员,建议考虑以下因素:
- 高分辨率模型训练需要大量计算资源,完整训练周期约4周
- 内存需求较高,32GB TPU虽可运行但非最优选择
- 低分辨率模型可作为快速验证的替代方案
这些数据为计划使用GraphCast进行天气预报研究的人员提供了宝贵的参考,有助于合理规划计算资源和时间安排。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1