GraphCast预训练模型训练时长与内存占用分析
2025-06-04 21:18:08作者:咎竹峻Karen
GraphCast作为谷歌DeepMind推出的全球天气预报模型,其预训练过程涉及复杂的计算资源调配。本文将深入分析GraphCast提供的三种预训练模型的训练时长和内存需求,帮助研究人员更好地规划模型训练。
主要模型训练细节
GraphCast的0.25度ERA5主模型训练过程可分为两个主要阶段:
- 初始单步训练阶段:约需2周时间
- 2-12步退火训练阶段:同样需要约2周时间
整个训练过程在32台TPU v4设备上完成,每台TPU配备32GB内存。值得注意的是,虽然技术上可以在32GB内存的TPU上完成训练,但为了获得更好的训练体验,建议使用内存更大的GPU/TPU设备。
操作模型训练特点
GraphCast的操作模型训练与主模型类似,但增加了一个额外的1AR微调阶段。这个阶段位于初始单步训练和退火训练之间,大约需要额外1天的训练时间。这使得操作模型的总训练时长略长于主模型。
低分辨率模型训练效率
GraphCast还提供了1度分辨率的模型版本,这个低分辨率模型的训练效率显著提高。从数据来看,1度模型的总训练时间仅需约1.5天,远低于高分辨率模型,这为快速原型开发和实验提供了便利。
训练资源建议
基于实际训练经验,对于希望复现或扩展GraphCast模型的研究人员,建议考虑以下因素:
- 高分辨率模型训练需要大量计算资源,完整训练周期约4周
- 内存需求较高,32GB TPU虽可运行但非最优选择
- 低分辨率模型可作为快速验证的替代方案
这些数据为计划使用GraphCast进行天气预报研究的人员提供了宝贵的参考,有助于合理规划计算资源和时间安排。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
89
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
337
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
437
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19