GraphCast模型训练中的梯度检查点优化技术解析
2025-06-04 09:24:53作者:谭伦延
在深度学习模型训练过程中,内存消耗一直是制约模型规模的重要因素。本文以DeepMind开源的GraphCast气象预测模型为例,深入剖析其训练过程中采用的梯度检查点(Gradient Checkpointing)优化技术。
背景与挑战
GraphCast作为基于图神经网络(GNN)的气象预测模型,其核心架构包含复杂的网格节点MLP编码器、多层级消息传递机制以及编解码器结构。在标准实现中,仅网格节点MLP编码器的前向传播就可能消耗约10GB内存,这使得在32GB内存设备上训练完整模型面临严峻挑战。
梯度检查点技术实现
GraphCast团队在实际训练中采用了多层次梯度检查点策略:
- 网格模型分层检查:每3个消息传递步骤设置一个检查点,有效切分长计算路径
- 编解码器整体检查:对完整的编码器GNN和解码器GNN分别设置检查点
- 边模型块处理:在编解码器的边模型内部,采用边缘更新分块计算策略,避免全量边缘计算的内存压力
XLA/JAX的编译优化优势
除了显式的检查点设置,GraphCast还受益于JAX/XLA编译器的内在优化:
- 操作融合优化:编译器自动将多个操作融合为单一计算单元,天然减少了中间结果的存储需求
- 自动重计算:XLA编译器在检测到内存压力时,会智能地插入重计算点(rematerialization)
- 计算图优化:JAX的即时编译特性允许进行全局优化,包括内存布局和计算调度
工程实践启示
- 混合检查策略:结合显式检查点和编译器隐式优化可获得最佳效果
- 层次化设计:从算子级、模块级到系统级的分层检查点设置
- 框架选择:对于超大规模模型,选择具有高级编译优化能力的框架(如JAX)可显著降低工程复杂度
这些优化技术的组合应用,使得GraphCast这样的复杂模型能够在有限内存条件下实现高效训练,为大规模GNN模型的工程实现提供了重要参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210