基于KAN模型的超参数调优与模型复杂度评估
在机器学习项目中,超参数调优是一个至关重要的环节,它直接影响模型的性能和泛化能力。本文将以pykan项目中的KAN模型为例,探讨如何通过Optuna框架进行超参数优化,并引入AICc准则来平衡模型复杂度和拟合优度。
KAN模型简介
KAN(Kolmogorov-Arnold Network)是一种基于Kolmogorov-Arnold表示定理的神经网络架构。与传统的多层感知机不同,KAN模型通过可学习的激活函数来增强表达能力。在pykan项目中,KAN模型的主要超参数包括:
- neuron_num:隐藏层神经元数量
 - grid:网格分辨率参数
 - k:多项式插值阶数
 
这些参数共同决定了模型的容量和复杂度,需要仔细调优以获得最佳性能。
超参数优化框架
我们采用Optuna框架进行超参数搜索,这是一种高效的自动调参工具。Optuna通过定义搜索空间和优化目标,可以自动探索最优的超参数组合。
在实现中,我们首先定义了一个KANWrapper类,继承自原始的KAN类,并添加了模型复杂度评估功能。然后构建了包含以下要素的优化流程:
- 
搜索空间定义:
- neuron_num:1到10的整数
 - grid:2到10的整数
 - k:1到3的整数
 
 - 
目标函数设计:
- 模型训练
 - 训练集和测试集预测
 - 残差平方和(RSS)计算
 - AICc准则计算
 
 
模型复杂度评估
在模型选择中,单纯追求训练误差最小会导致过拟合。AICc(修正的赤池信息准则)提供了一种平衡模型拟合优度和复杂度的方案:
AICc = n*ln(RSS/n) + 2k + (2k(k+1))/(n-k-1)
其中:
- n是样本数量
 - RSS是残差平方和
 - k是模型参数数量
 
在实现中,我们简化了AICc计算,但保留了其核心思想:在拟合优度和模型复杂度之间寻求平衡。
参数数量计算
KAN模型的参数主要来自可学习的激活函数。每个连接对应一个激活函数,而每个激活函数由一组基函数系数表示。在我们的实现中,假设每个激活函数有4个参数(实际可能更多),因此总参数数为:
参数总数 = Σ(前层神经元数 × 后层神经元数 × 4)
这种计算方式虽然简化,但能反映模型复杂度的变化趋势。
实践建议
- 对于小样本数据,优先使用AICc而非AIC,因为它对小样本有修正
 - 网格搜索范围应根据问题复杂度合理设置,避免不必要的计算
 - 参数数量计算应根据实际模型结构精确化
 - 可以结合早停策略提高调优效率
 
通过这种方法,我们能够系统地探索KAN模型的超参数空间,找到在拟合能力和泛化性能之间达到最佳平衡的模型配置。这种框架不仅适用于KAN模型,也可推广到其他机器学习模型的调优过程。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00