基于KAN模型的超参数调优与模型复杂度评估
在机器学习项目中,超参数调优是一个至关重要的环节,它直接影响模型的性能和泛化能力。本文将以pykan项目中的KAN模型为例,探讨如何通过Optuna框架进行超参数优化,并引入AICc准则来平衡模型复杂度和拟合优度。
KAN模型简介
KAN(Kolmogorov-Arnold Network)是一种基于Kolmogorov-Arnold表示定理的神经网络架构。与传统的多层感知机不同,KAN模型通过可学习的激活函数来增强表达能力。在pykan项目中,KAN模型的主要超参数包括:
- neuron_num:隐藏层神经元数量
- grid:网格分辨率参数
- k:多项式插值阶数
这些参数共同决定了模型的容量和复杂度,需要仔细调优以获得最佳性能。
超参数优化框架
我们采用Optuna框架进行超参数搜索,这是一种高效的自动调参工具。Optuna通过定义搜索空间和优化目标,可以自动探索最优的超参数组合。
在实现中,我们首先定义了一个KANWrapper类,继承自原始的KAN类,并添加了模型复杂度评估功能。然后构建了包含以下要素的优化流程:
-
搜索空间定义:
- neuron_num:1到10的整数
- grid:2到10的整数
- k:1到3的整数
-
目标函数设计:
- 模型训练
- 训练集和测试集预测
- 残差平方和(RSS)计算
- AICc准则计算
模型复杂度评估
在模型选择中,单纯追求训练误差最小会导致过拟合。AICc(修正的赤池信息准则)提供了一种平衡模型拟合优度和复杂度的方案:
AICc = n*ln(RSS/n) + 2k + (2k(k+1))/(n-k-1)
其中:
- n是样本数量
- RSS是残差平方和
- k是模型参数数量
在实现中,我们简化了AICc计算,但保留了其核心思想:在拟合优度和模型复杂度之间寻求平衡。
参数数量计算
KAN模型的参数主要来自可学习的激活函数。每个连接对应一个激活函数,而每个激活函数由一组基函数系数表示。在我们的实现中,假设每个激活函数有4个参数(实际可能更多),因此总参数数为:
参数总数 = Σ(前层神经元数 × 后层神经元数 × 4)
这种计算方式虽然简化,但能反映模型复杂度的变化趋势。
实践建议
- 对于小样本数据,优先使用AICc而非AIC,因为它对小样本有修正
- 网格搜索范围应根据问题复杂度合理设置,避免不必要的计算
- 参数数量计算应根据实际模型结构精确化
- 可以结合早停策略提高调优效率
通过这种方法,我们能够系统地探索KAN模型的超参数空间,找到在拟合能力和泛化性能之间达到最佳平衡的模型配置。这种框架不仅适用于KAN模型,也可推广到其他机器学习模型的调优过程。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00