探索强大的少样本学习:DN4 in PyTorch(2023版)
2024-05-31 07:51:39作者:薛曦旖Francesca
一、项目介绍
在机器学习领域中,DN4是一个专为少样本学习设计的框架。它基于PyTorch实现,旨在提高模型在有限样本条件下的泛化能力。这个项目来源于论文《Revisiting Local Descriptor Based Image-to-Class Measure for Few-shot Learning》,在2019年的CVPR会议上发表,并于近期进行了更新。
二、项目技术分析
DN4的关键在于其独特的Local Descriptor Based Image-to-Class Measure策略。通过结合卷积神经网络(如Conv64F和ResNet12)提取的局部特征,该方法能够以较高的精度进行图像分类,即使只有少数样例。更新后的2023版本提升了性能,特别是在ResNet12作为基础模型时,5-way 1-shot和5-way 5-shot任务中的表现均有显著提升。
三、应用场景
DN4适用于各种场景,尤其是那些数据集小但类别多的领域,例如:
- 生物医学图像识别 - 当研究特定疾病的罕见病例时,可用的训练样本可能非常有限。
- 自然语言处理中的低资源任务 - 如少见词汇或方言的翻译。
- 遥感图像分类 - 针对特定地理环境或事件的识别。
- 计算机视觉的实时应用 - 如自动驾驶汽车中的物体检测,需要快速适应新类别的出现。
四、项目特点
- 高效 - 基于PyTorch的实现,提供了简洁、可读性强的代码结构,便于理解和复用。
- 灵活性 - 兼容多种模型(如Conv64F和ResNet12),方便研究人员根据需求选择。
- 可扩展性 - 支持多种数据集,包括miniImageNet、tieredImageNet等,易于扩展到其他领域。
- 持续改进 - 最新的2023版带来了性能提升,显示出开发团队对算法优化的持续关注。
要尝试这个项目,您只需遵循提供的安装指南,下载所需的数据集,然后运行预定义的训练和测试脚本。为了公平使用和学术交流,请在引用该项目时参考原始论文。
@inproceedings{DN4_CVPR_2019,
author = {Wenbin Li and
Lei Wang and
Jinglin Xu and
Jing Huo and
Yang Gao and
Jiebo Luo},
title = {Revisiting Local Descriptor Based Image-To-Class Measure for Few-Shot Learning},
booktitle = {{IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)},
pages = {7260--7268},
year = {2019}
}
DN4是一个强大且易用的工具,对于任何想要在少样本学习方面取得突破的研究者来说,都值得一试。现在就加入,挖掘这个框架的无限潜力吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 Python案例资源下载 - 从入门到精通的完整项目代码合集 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
Ascend Extension for PyTorch
Python
131
159
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
221
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.5 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
156
206