首页
/ 探索强大的少样本学习:DN4 in PyTorch(2023版)

探索强大的少样本学习:DN4 in PyTorch(2023版)

2024-05-31 07:51:39作者:薛曦旖Francesca

一、项目介绍

在机器学习领域中,DN4是一个专为少样本学习设计的框架。它基于PyTorch实现,旨在提高模型在有限样本条件下的泛化能力。这个项目来源于论文《Revisiting Local Descriptor Based Image-to-Class Measure for Few-shot Learning》,在2019年的CVPR会议上发表,并于近期进行了更新。

二、项目技术分析

DN4的关键在于其独特的Local Descriptor Based Image-to-Class Measure策略。通过结合卷积神经网络(如Conv64F和ResNet12)提取的局部特征,该方法能够以较高的精度进行图像分类,即使只有少数样例。更新后的2023版本提升了性能,特别是在ResNet12作为基础模型时,5-way 1-shot和5-way 5-shot任务中的表现均有显著提升。

三、应用场景

DN4适用于各种场景,尤其是那些数据集小但类别多的领域,例如:

  1. 生物医学图像识别 - 当研究特定疾病的罕见病例时,可用的训练样本可能非常有限。
  2. 自然语言处理中的低资源任务 - 如少见词汇或方言的翻译。
  3. 遥感图像分类 - 针对特定地理环境或事件的识别。
  4. 计算机视觉的实时应用 - 如自动驾驶汽车中的物体检测,需要快速适应新类别的出现。

四、项目特点

  1. 高效 - 基于PyTorch的实现,提供了简洁、可读性强的代码结构,便于理解和复用。
  2. 灵活性 - 兼容多种模型(如Conv64F和ResNet12),方便研究人员根据需求选择。
  3. 可扩展性 - 支持多种数据集,包括miniImageNet、tieredImageNet等,易于扩展到其他领域。
  4. 持续改进 - 最新的2023版带来了性能提升,显示出开发团队对算法优化的持续关注。

要尝试这个项目,您只需遵循提供的安装指南,下载所需的数据集,然后运行预定义的训练和测试脚本。为了公平使用和学术交流,请在引用该项目时参考原始论文。

@inproceedings{DN4_CVPR_2019,
  author       = {Wenbin Li and
                  Lei Wang and
                  Jinglin Xu and
                  Jing Huo and
                  Yang Gao and
                  Jiebo Luo},
  title        = {Revisiting Local Descriptor Based Image-To-Class Measure for Few-Shot Learning},
  booktitle    = {{IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages        = {7260--7268},
  year         = {2019}
}

DN4是一个强大且易用的工具,对于任何想要在少样本学习方面取得突破的研究者来说,都值得一试。现在就加入,挖掘这个框架的无限潜力吧!

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0