PyTorch-Meta 使用教程
2024-08-18 20:26:22作者:瞿蔚英Wynne
项目介绍
PyTorch-Meta 是一个开源项目,旨在为少样本分类和回归问题提供一个统一的接口,以便于在多个问题上进行轻松的基准测试和可重复性研究。该项目基于 PyTorch 框架,利用其灵活性和模块化的特性,为研究人员和开发者提供了一个强大的工具。
项目快速启动
安装
首先,确保你已经安装了 PyTorch。然后,你可以通过以下命令安装 PyTorch-Meta:
pip install git+https://github.com/tristandeleu/pytorch-meta.git
示例代码
以下是一个简单的示例代码,展示了如何使用 PyTorch-Meta 进行少样本分类:
import torch
from torchmeta.datasets import Omniglot
from torchmeta.transforms import Categorical, ClassSplitter
from torchvision.transforms import Compose, Resize, ToTensor
from torchmeta.utils.data import BatchMetaDataLoader
# 加载数据集
dataset = Omniglot("data", num_classes_per_task=5, transform=Compose([Resize(28), ToTensor()]),
target_transform=Categorical(num_classes=5),
class_augmentations=[Rotation([90, 180, 270])])
dataset = ClassSplitter(dataset, shuffle=True, num_train_per_class=5, num_test_per_class=15)
dataloader = BatchMetaDataLoader(dataset, batch_size=16, shuffle=True)
# 定义模型
model = torch.nn.Linear(28*28, 5)
# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.CrossEntropyLoss()
for epoch in range(10):
for batch in dataloader:
train_inputs, train_targets = batch["train"]
test_inputs, test_targets = batch["test"]
optimizer.zero_grad()
outputs = model(train_inputs.view(train_inputs.size(0), -1))
loss = criterion(outputs, train_targets)
loss.backward()
optimizer.step()
应用案例和最佳实践
应用案例
PyTorch-Meta 可以应用于多种少样本学习场景,例如:
- 图像分类:在 Omniglot 数据集上进行少样本图像分类。
- 文本分类:在少样本文本分类任务中,利用预训练的语言模型进行微调。
最佳实践
- 数据预处理:确保数据预处理步骤的一致性,以便于模型训练和评估。
- 模型选择:根据任务需求选择合适的模型架构,例如卷积神经网络(CNN)或循环神经网络(RNN)。
- 超参数调优:使用网格搜索或随机搜索进行超参数调优,以获得最佳性能。
典型生态项目
PyTorch-Meta 作为 PyTorch 生态系统的一部分,与其他项目协同工作,例如:
- PyTorch Lightning:用于简化 PyTorch 代码的组织和训练过程。
- Hugging Face Transformers:用于预训练语言模型,结合 PyTorch-Meta 进行少样本文本分类。
- TorchVision:提供图像处理和计算机视觉任务的工具和模型。
通过这些生态项目的结合使用,可以进一步扩展 PyTorch-Meta 的应用范围和功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250