Tenstorrent TT-Metal v0.59.0-rc23 版本技术解析
Tenstorrent TT-Metal 是一个面向AI加速的高性能计算框架,专注于为深度学习工作负载提供高效的硬件加速支持。最新发布的v0.59.0-rc23版本带来了多项重要改进和功能增强,本文将深入解析这些技术更新。
核心架构优化
本次更新在系统架构层面进行了多项优化。首先是对Tensor属性的访问接口进行了清理和标准化,使得开发者能够更一致地获取Tensor的各种属性。同时移除了Tensor的"workers"概念,简化了内存管理模型,提高了系统的整体稳定性。
在设备管理方面,更新改进了DevicePool的初始化流程,移除了不必要的noexcept限定符,使得错误处理更加灵活。此外,还优化了全局环形缓冲区的实现,将原本分散在两个文件中的实现合并,提高了代码的可维护性。
性能提升与功能增强
新版本在多设备通信方面取得了显著进展。实现了"one to all"和"one to all multicast"通信原语,为分布式计算提供了更高效的通信模式。同时增加了连接打开/关闭的压力测试,确保系统在高负载下的稳定性。
在计算性能方面,更新为Eltwise和TM操作添加了多设备压力测试,验证了系统在大规模部署时的性能表现。特别值得注意的是对Yolov8x和SDXL等AI模型的优化,使得这些模型在新版本上能够获得更好的运行效率。
开发者体验改进
为了提升开发者体验,本次更新做了多项工作。首先是对Pybind接口的增强,增加了对Generic Op和ProgramDescriptor的支持,使得Python开发者能够更方便地使用系统功能。
在测试方面,更新修复了多个测试用例,包括fold_transpose测试在harvested BH设备上的兼容性问题,以及调整了matmul测试以适应新的batch_size获取逻辑。同时,还增加了对tt-mlir C++代码生成器emitc的测试基础设施,为未来的编译器优化奠定了基础。
深度学习模型支持
新版本加强了对多个流行AI模型的支持。针对Llama模型系列,特别优化了TG(可能是Tensor Graph)解码性能,解决了大于4k序列长度时的挂起问题。同时为Mistral模型添加了专门的ForCausalLM类,增强了与vLLM框架的兼容性。
在训练方面,更新引入了3-tier训练架构的演示,展示了系统在大规模分布式训练场景下的能力。同时修复了使用自定义tokenizer时的兼容性问题,使得模型训练更加灵活。
系统稳定性与可靠性
在系统可靠性方面,本次更新修复了多个关键问题。包括解决Fabric通信中的断言错误、优化了NOC状态检查脚本、修复了slice write在小通道情况下的问题等。
特别值得注意的是对动态路由与2D Push Fabric的集成,这为未来的大规模集群部署提供了更灵活的通信能力。同时新增的"One from All"原语测试,验证了系统在复杂通信模式下的可靠性。
总结
Tenstorrent TT-Metal v0.59.0-rc23版本在系统架构、性能优化、开发者体验和模型支持等方面都取得了显著进展。这些改进不仅提升了系统的稳定性和性能,也为开发者提供了更强大的工具和更友好的接口。随着这些新特性的加入,TT-Metal在AI加速领域的能力得到了进一步强化,为处理更复杂的深度学习工作负载奠定了坚实基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00