Tenstorrent TT-Metal v0.59.0-rc10 版本技术解析与架构演进
Tenstorrent TT-Metal 是一个面向高性能计算的硬件加速框架,专注于为AI和机器学习工作负载提供高效的张量处理能力。本次发布的v0.59.0-rc10版本带来了多项重要改进,涵盖了核心架构优化、性能提升和新功能支持等方面。
核心架构优化
本次版本在底层架构上进行了多项重要改进。首先是对设备初始化的重构,将固件构建和内存清理操作从设备初始化阶段移至MetalContext初始化阶段,这一变化使得设备管理更加模块化,减少了重复操作,提高了系统启动效率。
在内存管理方面,版本移除了主机端缓冲区分配/释放的概念,转而采用更高效的transform接口来隐藏主机缓冲区操作细节。这种设计简化了API使用,同时为未来的性能优化奠定了基础。全局循环缓冲区实现也得到了简化,合并了头文件和实现文件,使代码结构更加清晰。
性能提升与优化
针对张量处理性能,本版本做了多处优化。在TopK操作中,扩展了对子核心网格的支持,并充分利用列中的最大可用核心数,显著提高了大规模数据排序的效率。Argmax操作则根据NOC宽度调整了每核心处理单元数,使计算更加均衡。
矩阵乘法测试中更新了批量大小计算方法,使其更加精确。同时,针对特定硬件配置启用了binary_ng优化,为支持的配置提供了更好的性能表现。特别值得注意的是,增加了对不同条件下性能测量的支持,为开发者提供了更全面的性能分析工具。
新功能与模型支持
在模型支持方面,本版本集成了多个重要模型。VAE解码器被成功集成到SDv1-4演示中,扩展了生成模型的适用范围。同时为MistralForCausalLM类添加了vLLM支持,增强了大型语言模型的推理能力。
3层架构训练演示得到了改进,修复了启用自定义分词器时的问题。Llama模型的支持也得到了增强,包括对Llama 3模型权重的导入支持,以及针对TG解码在长序列(>4k)情况下的稳定性修复。
系统稳定性与可靠性
在系统稳定性方面,本版本修复了多个关键问题。修复了Blackhole设备上的以太网微基准测试挂起问题,确保网络通信的可靠性。调整了路由算法,优化了intermesh到下一个mesh的路由效率。
针对多设备场景,新增了Eltwise和TM压力测试,验证系统在高负载下的稳定性。同时增加了连接打开/关闭的压力测试,确保网络连接的健壮性。路由测试中减少了使用的核心数以规避内核参数限制,保证了测试的可靠性。
开发者体验改进
在开发者工具方面,版本增加了对TT-MLIR的C++代码生成emitc的测试基础设施,为编译器开发者提供了更好的支持。文档方面,更新了多个模型的README文件,使开发者能够更快上手。
调试工具也有显著改进,包括增强的检查noc状态脚本和更详细的断言信息。版本还修复了PCH构建问题,确保不同构建配置下的兼容性。
总结
Tenstorrent TT-Metal v0.59.0-rc10版本在架构、性能和功能等多个维度都有显著进步。从底层的设备管理重构到上层的模型支持扩展,从核心计算优化到开发者工具完善,这些改进共同推动了框架的成熟度和可用性。特别是对大型语言模型和生成模型的支持增强,使TT-Metal在AI加速领域保持了竞争力。这些变化为后续版本的功能扩展和性能提升奠定了坚实基础。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00