ASP.NET Extensions项目中AI评估模块的结构化输出实践
2025-06-27 22:54:15作者:幸俭卉
在ASP.NET Extensions项目的AI评估模块开发过程中,我们针对评估提示词的结构化输出进行了深入探索和实践。本文将详细介绍这一技术实践的关键发现和解决方案。
背景与挑战
现代AI评估系统通常需要大型语言模型(LLM)按照特定格式输出评估结果。在ASP.NET Extensions项目中,我们遇到了两种典型的输出需求:
- 复杂JSON结构输出:如RelevanceTruthAndCompletenessEvaluator需要模型返回包含多个评估维度的结构化数据
- 简单数值输出:如SingleNumericMetricEvaluator仅需要返回单个整数值
项目最初采用提示词工程来约束模型输出格式,但随着.NET AI库引入了GetResponseAsync这一结构化输出支持,我们开始探索如何利用这一特性来改进评估系统。
技术实现
复杂JSON输出的完美适配
对于需要返回复杂JSON结构的评估器,如RelevanceTruthAndCompletenessEvaluator,GetResponseAsync表现优异。我们只需:
- 定义与预期JSON结构匹配的C#类型
- 在提示词中明确要求JSON格式输出
- 使用GetResponseAsync直接获取结构化结果
这种方法不仅简化了代码,还提高了结果的可靠性和类型安全性。
简单数值输出的挑战
对于仅需返回单个整数的评估场景,我们发现GetResponseAsync存在兼容性问题。根本原因在于:
- 当前结构化输出实现基于JSON Schema
- 多数AI服务提供商(如OpenAI)要求顶层必须为对象类型
- 简单值类型(int等)无法满足这一约束
解决方案与权衡
经过团队讨论和技术验证,我们采取了以下策略:
- 对已有JSON输出的评估器迁移到GetResponseAsync方案
- 简单数值评估器保持原有提示词方案,因其具有:
- 更紧凑的token使用
- 潜在更低的错误率
- 模型兼容性更好
未来展望
虽然当前方案解决了大部分需求,但团队认识到:
- 理想情况下应支持简单值类型的结构化输出
- 需要使这一行为可配置,以适应不同AI供应商的能力
- 结构化输出的模型兼容性需要进一步验证
这一实践为.NET生态中的AI评估系统开发提供了宝贵经验,展示了如何平衡技术先进性与实际约束条件。随着AI服务能力的演进,我们期待能够实现更灵活、更高效的结构化输出方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
148
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19