ASP.NET Extensions项目中AI评估模块的结构化输出实践
2025-06-27 01:13:41作者:幸俭卉
在ASP.NET Extensions项目的AI评估模块开发过程中,我们针对评估提示词的结构化输出进行了深入探索和实践。本文将详细介绍这一技术实践的关键发现和解决方案。
背景与挑战
现代AI评估系统通常需要大型语言模型(LLM)按照特定格式输出评估结果。在ASP.NET Extensions项目中,我们遇到了两种典型的输出需求:
- 复杂JSON结构输出:如RelevanceTruthAndCompletenessEvaluator需要模型返回包含多个评估维度的结构化数据
- 简单数值输出:如SingleNumericMetricEvaluator仅需要返回单个整数值
项目最初采用提示词工程来约束模型输出格式,但随着.NET AI库引入了GetResponseAsync这一结构化输出支持,我们开始探索如何利用这一特性来改进评估系统。
技术实现
复杂JSON输出的完美适配
对于需要返回复杂JSON结构的评估器,如RelevanceTruthAndCompletenessEvaluator,GetResponseAsync表现优异。我们只需:
- 定义与预期JSON结构匹配的C#类型
- 在提示词中明确要求JSON格式输出
- 使用GetResponseAsync直接获取结构化结果
这种方法不仅简化了代码,还提高了结果的可靠性和类型安全性。
简单数值输出的挑战
对于仅需返回单个整数的评估场景,我们发现GetResponseAsync存在兼容性问题。根本原因在于:
- 当前结构化输出实现基于JSON Schema
- 多数AI服务提供商(如OpenAI)要求顶层必须为对象类型
- 简单值类型(int等)无法满足这一约束
解决方案与权衡
经过团队讨论和技术验证,我们采取了以下策略:
- 对已有JSON输出的评估器迁移到GetResponseAsync方案
- 简单数值评估器保持原有提示词方案,因其具有:
- 更紧凑的token使用
- 潜在更低的错误率
- 模型兼容性更好
未来展望
虽然当前方案解决了大部分需求,但团队认识到:
- 理想情况下应支持简单值类型的结构化输出
- 需要使这一行为可配置,以适应不同AI供应商的能力
- 结构化输出的模型兼容性需要进一步验证
这一实践为.NET生态中的AI评估系统开发提供了宝贵经验,展示了如何平衡技术先进性与实际约束条件。随着AI服务能力的演进,我们期待能够实现更灵活、更高效的结构化输出方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
520
3.7 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1