OBBDetection 项目安装与使用教程
2024-09-16 11:29:04作者:胡易黎Nicole
1. 项目目录结构及介绍
OBBDetection 是一个基于 MMDetection 的面向遥感图像的目标检测工具箱,支持多种定向目标检测算法。以下是项目的目录结构及其介绍:
OBBDetection/
├── BboxToolkit/
├── configs/
├── demo/
├── docker/
├── docs/
├── mmdet/
├── requirements/
├── tests/
├── tools/
├── .gitignore
├── .gitmodules
├── isort.cfg
├── pre-commit-config.yaml
├── readthedocs.yml
├── style.yapf
├── LICENSE
├── README.md
├── pytest.ini
├── requirements.txt
└── setup.py
目录介绍
- BboxToolkit/: 包含用于处理定向边界框(OBB)的工具。
- configs/: 存放各种配置文件,用于定义模型和训练参数。
- demo/: 包含一些示例代码和演示脚本。
- docker/: 存放 Docker 相关的文件,用于构建容器化环境。
- docs/: 存放项目的文档文件。
- mmdet/: 包含 MMDetection 的核心代码。
- requirements/: 存放项目的依赖文件。
- tests/: 存放测试代码。
- tools/: 包含一些实用工具脚本。
- .gitignore: Git 忽略文件配置。
- .gitmodules: Git 子模块配置。
- isort.cfg: isort 配置文件。
- pre-commit-config.yaml: pre-commit 配置文件。
- readthedocs.yml: ReadTheDocs 配置文件。
- style.yapf: yapf 代码格式化配置文件。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- pytest.ini: pytest 配置文件。
- requirements.txt: 项目依赖文件。
- setup.py: 项目安装脚本。
2. 项目启动文件介绍
OBBDetection 项目的启动文件主要集中在 tools/
目录下,以下是一些常用的启动文件及其功能介绍:
- tools/train.py: 用于训练模型的脚本。
- tools/test.py: 用于测试模型的脚本。
- tools/demo.py: 用于运行演示脚本的工具。
启动示例
# 训练模型
python tools/train.py configs/your_config.py
# 测试模型
python tools/test.py configs/your_config.py
# 运行演示
python tools/demo.py
3. 项目的配置文件介绍
OBBDetection 的配置文件主要存放在 configs/
目录下,配置文件用于定义模型的结构、训练参数、数据集路径等。以下是一个典型的配置文件结构及其介绍:
# 配置文件示例
_base_ = [
'../_base_/models/faster_rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py',
'../_base_/default_runtime.py'
]
model = dict(
roi_head=dict(
bbox_head=dict(
type='Shared2FCBBoxHead',
num_classes=80
)
)
)
data = dict(
samples_per_gpu=2,
workers_per_gpu=2
)
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[8, 11]
)
runner = dict(type='EpochBasedRunner', max_epochs=12)
配置文件结构介绍
- base: 引用基础配置文件,通常包括模型、数据集、训练计划和默认运行时配置。
- model: 定义模型的结构,包括主干网络、RPN、ROI 头等。
- data: 定义数据集的配置,包括批量大小、数据加载器等。
- optimizer: 定义优化器及其参数。
- lr_config: 定义学习率调度策略。
- runner: 定义训练的运行器及其参数。
通过修改这些配置文件,用户可以自定义模型的训练和测试过程。
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
267
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4