OBBDetection 开源项目教程
2024-09-13 19:18:23作者:郜逊炳
1. 项目介绍
OBBDetection 是一个基于 MMDetection 的面向遥感图像的目标检测工具箱,特别支持定向边界框(Oriented Bounding Box, OBB)的目标检测。该项目继承了 MMDetection 的模块化设计和丰富功能,同时增加了对定向边界框的支持,使其特别适合处理遥感图像中的目标检测任务。
主要特性
- 继承 MMDetection 的全部功能:OBBDetection 在不改变 MMDetection 原有结构和代码的基础上进行了扩展,因此用户可以无缝使用 MMDetection 中的所有功能。
- 支持多种定向目标检测算法:工具箱实现了多种最先进的定向目标检测算法,如 RoI Transformer、Gliding Vertex 等。
- 灵活的边界框表示:支持水平边界框(HBB)、定向边界框(OBB)和 4 点表示法(POLY)。
- 丰富的模型库:提供了一个包含多种预训练模型的模型库,涵盖了各种主干网络和检测算法。
2. 项目快速启动
安装环境
首先,确保你已经安装了 PyTorch 和 CUDA。然后,按照以下步骤安装 OBBDetection:
# 克隆项目仓库
git clone https://github.com/jbwang1997/OBBDetection.git
cd OBBDetection
# 创建并激活虚拟环境
conda create -n obbdetection python=3.8 -y
conda activate obbdetection
# 安装 PyTorch 和 CUDA 支持
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
# 安装 mmcv-full
pip install -U openmim
mim install mmcv-full==1.4.1
# 安装 OBBDetection
pip install -v -e .
# 安装 BboxToolkit
cd BboxToolkit
pip install -v -e .
训练模型
假设你已经准备好了数据集,可以使用以下命令开始训练模型:
python tools/train.py configs/your_config_file.py
测试模型
训练完成后,可以使用以下命令测试模型:
python tools/test.py configs/your_config_file.py work_dirs/your_experiment/latest.pth --eval bbox
3. 应用案例和最佳实践
遥感图像目标检测
OBBDetection 特别适用于遥感图像中的目标检测任务。例如,在 DOTA 数据集上,使用 ResNet50 作为主干网络的 Oriented R-CNN 模型在不使用任何技巧的情况下,就达到了 75.87% 的 mAP。
自定义数据集
如果你有自定义的遥感图像数据集,可以按照以下步骤进行数据准备和模型训练:
- 数据准备:将数据集转换为 OBBDetection 支持的格式。
- 配置文件:根据你的数据集创建或修改配置文件。
- 训练和测试:使用上述命令进行模型训练和测试。
4. 典型生态项目
MMDetection
OBBDetection 是基于 MMDetection 开发的,MMDetection 是一个开源的目标检测工具箱,支持多种目标检测算法。
BboxToolkit
BboxToolkit 是 OBBDetection 依赖的一个工具包,用于支持定向边界框的操作。
DOTA 数据集
DOTA 是一个用于遥感图像目标检测的大型数据集,OBBDetection 在该数据集上表现出色。
通过以上步骤,你可以快速上手并使用 OBBDetection 进行遥感图像的目标检测任务。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896