OBBDetection 开源项目教程
2024-09-13 23:14:09作者:郜逊炳
1. 项目介绍
OBBDetection 是一个基于 MMDetection 的面向遥感图像的目标检测工具箱,特别支持定向边界框(Oriented Bounding Box, OBB)的目标检测。该项目继承了 MMDetection 的模块化设计和丰富功能,同时增加了对定向边界框的支持,使其特别适合处理遥感图像中的目标检测任务。
主要特性
- 继承 MMDetection 的全部功能:OBBDetection 在不改变 MMDetection 原有结构和代码的基础上进行了扩展,因此用户可以无缝使用 MMDetection 中的所有功能。
- 支持多种定向目标检测算法:工具箱实现了多种最先进的定向目标检测算法,如 RoI Transformer、Gliding Vertex 等。
- 灵活的边界框表示:支持水平边界框(HBB)、定向边界框(OBB)和 4 点表示法(POLY)。
- 丰富的模型库:提供了一个包含多种预训练模型的模型库,涵盖了各种主干网络和检测算法。
2. 项目快速启动
安装环境
首先,确保你已经安装了 PyTorch 和 CUDA。然后,按照以下步骤安装 OBBDetection:
# 克隆项目仓库
git clone https://github.com/jbwang1997/OBBDetection.git
cd OBBDetection
# 创建并激活虚拟环境
conda create -n obbdetection python=3.8 -y
conda activate obbdetection
# 安装 PyTorch 和 CUDA 支持
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
# 安装 mmcv-full
pip install -U openmim
mim install mmcv-full==1.4.1
# 安装 OBBDetection
pip install -v -e .
# 安装 BboxToolkit
cd BboxToolkit
pip install -v -e .
训练模型
假设你已经准备好了数据集,可以使用以下命令开始训练模型:
python tools/train.py configs/your_config_file.py
测试模型
训练完成后,可以使用以下命令测试模型:
python tools/test.py configs/your_config_file.py work_dirs/your_experiment/latest.pth --eval bbox
3. 应用案例和最佳实践
遥感图像目标检测
OBBDetection 特别适用于遥感图像中的目标检测任务。例如,在 DOTA 数据集上,使用 ResNet50 作为主干网络的 Oriented R-CNN 模型在不使用任何技巧的情况下,就达到了 75.87% 的 mAP。
自定义数据集
如果你有自定义的遥感图像数据集,可以按照以下步骤进行数据准备和模型训练:
- 数据准备:将数据集转换为 OBBDetection 支持的格式。
- 配置文件:根据你的数据集创建或修改配置文件。
- 训练和测试:使用上述命令进行模型训练和测试。
4. 典型生态项目
MMDetection
OBBDetection 是基于 MMDetection 开发的,MMDetection 是一个开源的目标检测工具箱,支持多种目标检测算法。
BboxToolkit
BboxToolkit 是 OBBDetection 依赖的一个工具包,用于支持定向边界框的操作。
DOTA 数据集
DOTA 是一个用于遥感图像目标检测的大型数据集,OBBDetection 在该数据集上表现出色。
通过以上步骤,你可以快速上手并使用 OBBDetection 进行遥感图像的目标检测任务。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5