【亲测免费】 Bayesian Neural Network PyTorch 项目教程
2026-01-20 02:46:25作者:卓炯娓
1. 项目介绍
bayesian-neural-network-pytorch 是一个基于 PyTorch 实现的贝叶斯神经网络(Bayesian Neural Network, BNN)库。贝叶斯神经网络通过引入参数的分布来量化模型的不确定性,从而在深度学习中提供更可靠的预测。该项目提供了一个轻量级的库,支持贝叶斯神经网络的构建和训练,适用于回归和分类任务。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 PyTorch 和 Python 3.6 或更高版本。然后,你可以通过以下命令安装 torchbnn 库:
pip install torchbnn
或者从 GitHub 克隆项目并安装:
git clone https://github.com/Harry24k/bayesian-neural-network-pytorch.git
cd bayesian-neural-network-pytorch
pip install .
快速示例
以下是一个简单的贝叶斯神经网络回归示例:
import torch
import torchbnn as bnn
# 定义数据
x = torch.randn(100, 1)
y = x * 2 + torch.randn(100, 1) * 0.3
# 定义贝叶斯神经网络模型
model = torch.nn.Sequential(
bnn.BayesLinear(prior_mu=0, prior_sigma=0.1, in_features=1, out_features=10),
torch.nn.ReLU(),
bnn.BayesLinear(prior_mu=0, prior_sigma=0.1, in_features=10, out_features=1)
)
# 定义损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# 训练模型
for epoch in range(1000):
optimizer.zero_grad()
output = model(x)
loss = criterion(output, y)
kl_loss = bnn.functional.kl_divergence(model)
total_loss = loss + kl_loss
total_loss.backward()
optimizer.step()
# 预测
predicted = model(x)
print(predicted)
3. 应用案例和最佳实践
应用案例
- 回归任务:在回归任务中,贝叶斯神经网络可以提供预测的不确定性估计,这对于需要可靠预测的应用(如金融预测、医疗诊断)非常有用。
- 分类任务:在分类任务中,贝叶斯神经网络可以提供每个类别的概率分布,从而更好地处理不确定性和噪声数据。
最佳实践
- 选择合适的先验分布:在定义贝叶斯神经网络时,选择合适的先验分布(如高斯分布)可以帮助模型更好地学习。
- 调整KL散度权重:在训练过程中,调整KL散度损失的权重可以平衡模型的拟合能力和不确定性估计。
- 多轮预测:通过多次预测并计算均值和方差,可以获得更可靠的预测结果。
4. 典型生态项目
- PyTorch-BayesianCNN:一个基于 PyTorch 的贝叶斯卷积神经网络库,适用于图像分类任务。
- bayesian-torch:由 Intel Labs 开发的贝叶斯神经网络库,提供了更多的贝叶斯层和不确定性估计工具。
通过这些生态项目,你可以进一步扩展贝叶斯神经网络的应用场景,并结合其他工具进行更复杂的不确定性分析。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178