CogVLM模型权重转换:从SAT格式到HuggingFace格式的技术指南
2025-06-02 23:54:54作者:曹令琨Iris
概述
本文将详细介绍如何将CogVLM模型的权重从SAT格式转换为HuggingFace格式。CogVLM是由THUDM团队开发的多模态大语言模型,支持视觉和语言联合理解。在实际应用中,开发者可能需要将模型权重转换为HuggingFace格式以便于使用Transformers库进行推理和部署。
转换前的准备工作
在进行权重转换前,需要确保已完成以下步骤:
- 模型合并:如果使用了模型并行训练,需要先运行merge_model.py脚本将分片模型合并为完整模型
- LoRA权重合并:如果使用了LoRA微调,需要先将LoRA权重合并到基础模型中
转换脚本解析
以下是完整的SAT到HuggingFace格式转换脚本的核心逻辑:
def vlm(hf_dir: str, sat_dir: str = '~/.sat_models/cogvlm-chat'):
import os
import json
import torch
from pathlib import Path
# 创建输出目录
Path(hf_dir).mkdir(exist_ok=True)
# 加载SAT格式模型权重
state_dict = torch.load(os.path.expanduser(os.path.join(sat_dir, '1', 'mp_rank_00_model_states.pt')), map_location='cpu')
state_dict = state_dict['module']
# 权重映射转换
new_state_dict = {}
for k, v in state_dict.items():
# 处理视觉部分权重
if k.startswith('mixins.eva.vit_model.mixins.patch_embedding'):
new_state_dict[k.replace('mixins.eva.vit_model.mixins.', '', 1)] = v
elif k.startswith('mixins.eva.vit_model.transformer.position_embeddings'):
new_state_dict[k.replace('mixins.eva.vit_model.transformer.position_embeddings', 'patch_embedding.position_embedding', 1)] = v
# 处理MLP层权重
elif k.startswith('mixins.mlp.vision_dense_h_to_4h_list.'):
idx = str(k).replace('mixins.mlp.vision_dense_h_to_4h_list.', '').replace('.weight', '')
new_state_dict[f"model.layers.{idx}.mlp.vision_mlp.up_proj.weight"] = v
# 处理注意力层权重
elif k.startswith('transformer.layers.') and str(k).endswith('.attention.query_key_value.weight'):
idx = str(k).replace('transformer.layers.', '').replace('.attention.query_key_value.weight', '')
new_state_dict[f"model.layers.{idx}.self_attn.language_expert_query_key_value.weight"] = v
# 其他权重处理...
# 保存转换后的权重
torch.save(new_state_dict, os.path.join(hf_dir, 'pytorch_model.bin'))
# 生成配置文件
config = json.load(open(os.path.expanduser(os.path.join(sat_dir, 'model_config.json'))))
vision_config = {
'dropout_prob': 0.0,
'hidden_act': 'gelu',
'in_channels': config['eva_args']['in_channels'],
'num_hidden_layers': config['eva_args']['num_layers'],
# 其他配置参数...
}
final_config = {
'vision_config': vision_config,
'hidden_size': config['hidden_size'],
'intermediate_size': config['inner_hidden_size'],
# 其他模型配置...
}
with open(os.path.join(hf_dir, 'config.json'), 'w') as f:
json.dump(final_config, f, indent=2)
关键转换逻辑
-
视觉模型权重转换:
- 处理patch embedding层权重
- 转换位置编码权重
- 映射视觉Transformer层权重
-
语言模型权重转换:
- 处理MLP层权重映射
- 转换注意力层权重
- 处理LayerNorm层权重
-
特殊标记处理:
- 转换BOI(图像开始)和EOI(图像结束)标记
- 处理CLS标记嵌入
配置文件生成
转换脚本会自动从原始SAT配置生成HuggingFace格式的配置文件,包括:
- 视觉模型配置:包含图像尺寸、patch大小、层数等参数
- 语言模型配置:包含隐藏层大小、注意力头数、词汇表大小等
- 联合模型配置:整合视觉和语言模型的配置参数
常见问题解决
-
权重转换失败:
- 确保已完成模型合并和LoRA权重合并
- 检查输入模型路径是否正确
- 验证模型版本是否匹配
-
配置参数不匹配:
- 检查原始模型配置中的关键参数
- 确保转换后的配置与模型结构一致
-
性能差异:
- 转换后应进行推理测试验证结果一致性
- 检查是否有权重映射错误
总结
通过本文介绍的转换方法,开发者可以方便地将CogVLM模型从SAT格式转换为HuggingFace格式,便于后续的推理部署和应用开发。转换过程主要涉及权重名称映射和配置文件生成两个关键步骤,需要特别注意模型合并和LoRA权重合并等预处理工作。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
242
2.38 K
仓颉编译器源码及 cjdb 调试工具。
C++
116
85
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
405
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
79
113
仓颉编程语言运行时与标准库。
Cangjie
123
98
仓颉编程语言测试用例。
Cangjie
34
71
暂无简介
Dart
539
118
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
591
116