CogVLM模型权重转换:从SAT格式到HuggingFace格式的技术指南
2025-06-02 23:54:54作者:曹令琨Iris
概述
本文将详细介绍如何将CogVLM模型的权重从SAT格式转换为HuggingFace格式。CogVLM是由THUDM团队开发的多模态大语言模型,支持视觉和语言联合理解。在实际应用中,开发者可能需要将模型权重转换为HuggingFace格式以便于使用Transformers库进行推理和部署。
转换前的准备工作
在进行权重转换前,需要确保已完成以下步骤:
- 模型合并:如果使用了模型并行训练,需要先运行merge_model.py脚本将分片模型合并为完整模型
- LoRA权重合并:如果使用了LoRA微调,需要先将LoRA权重合并到基础模型中
转换脚本解析
以下是完整的SAT到HuggingFace格式转换脚本的核心逻辑:
def vlm(hf_dir: str, sat_dir: str = '~/.sat_models/cogvlm-chat'):
import os
import json
import torch
from pathlib import Path
# 创建输出目录
Path(hf_dir).mkdir(exist_ok=True)
# 加载SAT格式模型权重
state_dict = torch.load(os.path.expanduser(os.path.join(sat_dir, '1', 'mp_rank_00_model_states.pt')), map_location='cpu')
state_dict = state_dict['module']
# 权重映射转换
new_state_dict = {}
for k, v in state_dict.items():
# 处理视觉部分权重
if k.startswith('mixins.eva.vit_model.mixins.patch_embedding'):
new_state_dict[k.replace('mixins.eva.vit_model.mixins.', '', 1)] = v
elif k.startswith('mixins.eva.vit_model.transformer.position_embeddings'):
new_state_dict[k.replace('mixins.eva.vit_model.transformer.position_embeddings', 'patch_embedding.position_embedding', 1)] = v
# 处理MLP层权重
elif k.startswith('mixins.mlp.vision_dense_h_to_4h_list.'):
idx = str(k).replace('mixins.mlp.vision_dense_h_to_4h_list.', '').replace('.weight', '')
new_state_dict[f"model.layers.{idx}.mlp.vision_mlp.up_proj.weight"] = v
# 处理注意力层权重
elif k.startswith('transformer.layers.') and str(k).endswith('.attention.query_key_value.weight'):
idx = str(k).replace('transformer.layers.', '').replace('.attention.query_key_value.weight', '')
new_state_dict[f"model.layers.{idx}.self_attn.language_expert_query_key_value.weight"] = v
# 其他权重处理...
# 保存转换后的权重
torch.save(new_state_dict, os.path.join(hf_dir, 'pytorch_model.bin'))
# 生成配置文件
config = json.load(open(os.path.expanduser(os.path.join(sat_dir, 'model_config.json'))))
vision_config = {
'dropout_prob': 0.0,
'hidden_act': 'gelu',
'in_channels': config['eva_args']['in_channels'],
'num_hidden_layers': config['eva_args']['num_layers'],
# 其他配置参数...
}
final_config = {
'vision_config': vision_config,
'hidden_size': config['hidden_size'],
'intermediate_size': config['inner_hidden_size'],
# 其他模型配置...
}
with open(os.path.join(hf_dir, 'config.json'), 'w') as f:
json.dump(final_config, f, indent=2)
关键转换逻辑
-
视觉模型权重转换:
- 处理patch embedding层权重
- 转换位置编码权重
- 映射视觉Transformer层权重
-
语言模型权重转换:
- 处理MLP层权重映射
- 转换注意力层权重
- 处理LayerNorm层权重
-
特殊标记处理:
- 转换BOI(图像开始)和EOI(图像结束)标记
- 处理CLS标记嵌入
配置文件生成
转换脚本会自动从原始SAT配置生成HuggingFace格式的配置文件,包括:
- 视觉模型配置:包含图像尺寸、patch大小、层数等参数
- 语言模型配置:包含隐藏层大小、注意力头数、词汇表大小等
- 联合模型配置:整合视觉和语言模型的配置参数
常见问题解决
-
权重转换失败:
- 确保已完成模型合并和LoRA权重合并
- 检查输入模型路径是否正确
- 验证模型版本是否匹配
-
配置参数不匹配:
- 检查原始模型配置中的关键参数
- 确保转换后的配置与模型结构一致
-
性能差异:
- 转换后应进行推理测试验证结果一致性
- 检查是否有权重映射错误
总结
通过本文介绍的转换方法,开发者可以方便地将CogVLM模型从SAT格式转换为HuggingFace格式,便于后续的推理部署和应用开发。转换过程主要涉及权重名称映射和配置文件生成两个关键步骤,需要特别注意模型合并和LoRA权重合并等预处理工作。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp课程中屏幕放大器知识点优化分析4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp音乐播放器项目中的函数调用问题解析6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析8 freeCodeCamp课程视频测验中的Tab键导航问题解析9 freeCodeCamp博客页面工作坊中的断言方法优化建议10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
164
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
952
560

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
396

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
407
387

React Native鸿蒙化仓库
C++
199
279

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0