CogVLM多轮对话训练技术解析与实现指南
2025-06-02 02:00:56作者:魏侃纯Zoe
多轮对话训练支持概述
CogVLM作为多模态大模型,其源代码确实支持多轮对话训练,但需要特别注意数据格式要求。与常见的HuggingFace格式不同,CogVLM要求使用特定的SAT格式进行微调训练。这一设计选择反映了模型架构对对话历史处理的特殊需求。
基础模型选择建议
对于多轮对话训练,建议从cogvlm-base-490预训练模型开始。这个基础版本包含了模型的核心能力,为后续的多轮对话微调提供了良好的起点。值得注意的是,基础模型的选择会显著影响最终微调效果,cogvlm-base-490经过验证能够较好地支持对话场景的扩展。
多轮对话实现机制
CogVLM通过chat_old_history_to_prompt函数处理对话历史,这是实现多轮对话的关键组件。该函数负责将对话历史序列转换为模型可处理的prompt格式。在多轮对话场景下,典型的处理流程如下:
- 对于包含"问1,答1,问2,答2"的对话序列
- 系统会生成prompt:"问1,答1,问2"
- 模型预测结果将与"答2"计算loss
这种设计实现了对话上下文的连贯性保持,使模型能够基于历史对话生成响应。
训练数据处理细节
在dataset.py的实现中,多轮对话数据的处理需要特别注意:
- 数据读取阶段需要完整保留对话轮次信息
- 每条多轮对话数据会被拆分为多个训练样本
- 每个训练样本包含截至当前轮次的所有历史对话
具体来说,对于"问1,答1,问2,答2"这样的样本:
- 第一次训练使用prompt="问1",目标为"答1"
- 第二次训练使用prompt="问1,答1,问2",目标为"答2"
这种渐进式的训练方式确保了模型既能学习单轮响应,又能掌握基于上下文的连续对话能力。
工程实现建议
实际实现多轮对话训练时,开发者需要注意:
- 数据预处理阶段要正确划分对话轮次
- 确保loss计算只针对当前轮次的响应
- 合理设置最大对话长度以避免内存溢出
- 注意特殊token的处理和对话边界的标记
通过合理配置这些参数,可以充分发挥CogVLM在多轮对话场景下的潜力,构建出具有强上下文感知能力的对话系统。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134