gallery-dl项目:如何基于现有文件构建SQLite数据库实现自动跳过已下载文件
在数据抓取和下载过程中,经常会遇到需要处理大量文件的情况。对于使用gallery-dl这样的下载工具的用户来说,如何高效管理已下载文件并避免重复下载是一个常见需求。本文将详细介绍如何基于现有文件构建SQLite数据库,使gallery-dl能够自动识别并跳过已下载的文件。
背景与需求分析
许多用户在使用gallery-dl下载内容时,初期可能没有启用存档功能,导致后续下载无法自动跳过已存在的文件。特别是当下载大量Twitter内容时,完整的元数据文件体积庞大,不便于携带。此时,基于现有文件构建SQLite数据库就成为一个实用的解决方案。
技术实现方案
文件名格式设计
要实现有效的文件去重,首先需要确保文件名具有唯一性。在Twitter内容下载场景中,可以采用以下格式:
{author[name]}-{tweet_id}-{date:Olocal/%Y%m%d-%H%M%S}-img{num}.{extension}
这种格式结合了作者名、推文ID、精确到秒的时间戳和图片序号,确保了每个文件的唯一性。
文件统计脚本
第一步是统计所有已下载文件的文件名。可以使用以下Python脚本遍历目标文件夹并生成文件名列表:
import os
import sys
def main():
if len(sys.argv) != 2:
print("请指定目标文件夹路径")
sys.exit(1)
target_dir = sys.argv[1]
if not os.path.isdir(target_dir):
print(f"错误:'{target_dir}'不是有效文件夹")
sys.exit(1)
json_files = []
other_files = []
for root, dirs, files in os.walk(target_dir):
for filename in files:
if filename.lower().endswith('.json'):
json_files.append(filename)
else:
other_files.append(filename)
with open('twitter-metadata.txt', 'w') as f:
f.write('\n'.join(json_files))
with open('twitter.txt', 'w') as f:
f.write('\n'.join(other_files))
print(f"完成!统计到{len(json_files)}个JSON文件和{len(other_files)}个其他文件")
if __name__ == '__main__':
main()
该脚本会将JSON文件和其他文件分别保存到不同的文本文件中,便于后续处理。
数据库构建脚本
接下来,需要将文件名列表转换为gallery-dl可识别的SQLite数据库格式。关键点在于gallery-dl的数据库文件中每个条目都以网站名称为前缀(如"twitter"):
import sqlite3
import os
def create_database(txt_path, db_path):
if os.path.exists(db_path):
os.remove(db_path)
conn = sqlite3.connect(db_path, timeout=60, check_same_thread=False)
conn.isolation_level = None
cursor = conn.cursor()
cursor.execute('''CREATE TABLE archive (
entry PRIMARY KEY
) WITHOUT ROWID''')
cursor.execute("BEGIN TRANSACTION")
try:
with open(txt_path, 'r') as f:
for line in f:
original = line.strip()
if original:
prefixed_name = f"twitter{original}"
cursor.execute(
"INSERT OR IGNORE INTO archive VALUES (?)",
(prefixed_name,)
)
cursor.execute("COMMIT")
except:
cursor.execute("ROLLBACK")
raise
finally:
conn.close()
return cursor.rowcount
def main():
file_pairs = [
("twitter-metadata.txt", "twitter-metadata.sqlite3"),
("twitter.txt", "twitter.sqlite3")
]
for txt_file, db_file in file_pairs:
if not os.path.exists(txt_file):
print(f"错误:找不到文件{txt_file}")
continue
record_count = create_database(txt_file, db_file)
print(f"已创建数据库{db_file},包含{record_count}条记录")
if __name__ == "__main__":
main()
注意事项与扩展
-
前缀问题:gallery-dl数据库中的每个条目都以网站名称为前缀(如"twitter"),这是容易被忽视的关键点。
-
自定义适配:如果文件名格式或目录结构与示例不同,可以调整脚本逻辑。例如:
- 修改文件名匹配规则
- 添加目录路径信息
- 更改网站名称前缀
-
性能优化:对于超大规模文件集合,可以考虑:
- 分批处理文件
- 增加进度显示
- 优化数据库事务处理
-
多平台兼容:脚本应能在Windows、Linux和macOS等不同操作系统上正常运行。
实际应用建议
- 定期执行数据库更新,保持与下载目录同步
- 将数据库文件纳入版本控制系统管理
- 考虑添加文件校验和(如MD5)作为额外去重依据
- 对于不同网站,创建独立的数据库文件
通过这种方法,用户可以有效地管理已下载内容,避免重复下载,同时保持数据可移植性。这种方案特别适合需要频繁在不同设备间迁移工作环境的用户。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









