在openapi-typescript项目中测量API请求时间的实践方案
2025-06-01 05:14:40作者:牧宁李
背景介绍
在现代前端开发中,性能监控是一个重要环节,特别是对于API请求的响应时间测量。openapi-typescript项目中的openapi-fetch模块提供了强大的API请求功能,但默认情况下不包含请求时间测量功能。本文将探讨如何在项目中实现这一功能。
核心问题分析
当我们需要测量API请求时间时,通常会面临以下几个技术挑战:
- 请求开始和结束时间的记录需要精确对应
- 测量逻辑不应干扰正常的请求流程
- 解决方案应保持类型安全
- 实现方式应简洁高效
解决方案对比
方案一:扩展Request对象属性
通过在Request对象上添加自定义属性来记录时间:
const myMiddleware: Middleware = {
async onRequest({ request }) {
(request as any).startTime = performance.now();
},
async onResponse({ request }) {
const endTime = performance.now();
const latency = endTime - (request as any).startTime;
console.log(latency);
},
};
优点:
- 实现简单直接
- 不需要额外数据结构
缺点:
- 需要类型断言,破坏类型安全
- 可能与其他库的扩展属性冲突
方案二:使用Map结构跟踪请求
利用Map数据结构来关联请求和时间戳:
const requestStartTimes: Map<Request, number> = new Map();
const myMiddleware: Middleware = {
async onRequest({ request }) {
requestStartTimes.set(request, performance.now());
},
async onResponse({ request }) {
const startTime = requestStartTimes.get(request);
requestStartTimes.delete(request);
const endTime = performance.now();
const latency = endTime - startTime;
console.log(latency);
},
};
优点:
- 保持类型安全
- 不会污染Request对象
- 实现清晰
缺点:
- 需要额外维护Map结构
- 需要考虑内存泄漏问题
技术实现细节
性能测量API的选择
现代浏览器提供了performance.now()方法,它:
- 返回高精度时间戳(微秒级)
- 不受系统时间调整影响
- 适合测量短时间间隔
内存管理考虑
使用Map方案时,需要注意:
- 确保每个请求都能从Map中正确删除
- 考虑添加超时清理机制
- 对于长时间挂起的请求需要特殊处理
错误处理增强
完善的实现应该考虑:
- 请求失败的情况(onError回调)
- 请求取消的情况
- 重复测量的处理
最佳实践建议
基于以上分析,推荐采用Map方案,并做以下增强:
class RequestTimer {
private timers = new Map<Request, number>();
start(request: Request) {
this.timers.set(request, performance.now());
}
end(request: Request): number | null {
const startTime = this.timers.get(request);
if (startTime === undefined) return null;
this.timers.delete(request);
return performance.now() - startTime;
}
clear() {
this.timers.clear();
}
}
// 使用示例
const timer = new RequestTimer();
const middleware: Middleware = {
onRequest: ({ request }) => timer.start(request),
onResponse: ({ request }) => {
const duration = timer.end(request);
if (duration !== null) {
metrics.trackApiLatency(duration);
}
},
onError: ({ request }) => {
timer.end(request); // 清理记录
}
};
扩展思考
这种测量模式可以进一步扩展为:
- 请求统计系统
- 性能报警机制
- 自动重试策略依据
- 用户体验优化指标
总结
在openapi-typescript项目中测量API请求时间是一个常见需求,通过合理利用中间件机制和Map数据结构,可以实现高效、安全的测量方案。本文介绍的RequestTimer类封装了核心逻辑,既保持了代码的整洁性,又提供了足够的扩展性,是生产环境中推荐的实现方式。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758