在openapi-typescript项目中测量API请求时间的实践方案
2025-06-01 10:03:16作者:牧宁李
背景介绍
在现代前端开发中,性能监控是一个重要环节,特别是对于API请求的响应时间测量。openapi-typescript项目中的openapi-fetch模块提供了强大的API请求功能,但默认情况下不包含请求时间测量功能。本文将探讨如何在项目中实现这一功能。
核心问题分析
当我们需要测量API请求时间时,通常会面临以下几个技术挑战:
- 请求开始和结束时间的记录需要精确对应
- 测量逻辑不应干扰正常的请求流程
- 解决方案应保持类型安全
- 实现方式应简洁高效
解决方案对比
方案一:扩展Request对象属性
通过在Request对象上添加自定义属性来记录时间:
const myMiddleware: Middleware = {
async onRequest({ request }) {
(request as any).startTime = performance.now();
},
async onResponse({ request }) {
const endTime = performance.now();
const latency = endTime - (request as any).startTime;
console.log(latency);
},
};
优点:
- 实现简单直接
- 不需要额外数据结构
缺点:
- 需要类型断言,破坏类型安全
- 可能与其他库的扩展属性冲突
方案二:使用Map结构跟踪请求
利用Map数据结构来关联请求和时间戳:
const requestStartTimes: Map<Request, number> = new Map();
const myMiddleware: Middleware = {
async onRequest({ request }) {
requestStartTimes.set(request, performance.now());
},
async onResponse({ request }) {
const startTime = requestStartTimes.get(request);
requestStartTimes.delete(request);
const endTime = performance.now();
const latency = endTime - startTime;
console.log(latency);
},
};
优点:
- 保持类型安全
- 不会污染Request对象
- 实现清晰
缺点:
- 需要额外维护Map结构
- 需要考虑内存泄漏问题
技术实现细节
性能测量API的选择
现代浏览器提供了performance.now()
方法,它:
- 返回高精度时间戳(微秒级)
- 不受系统时间调整影响
- 适合测量短时间间隔
内存管理考虑
使用Map方案时,需要注意:
- 确保每个请求都能从Map中正确删除
- 考虑添加超时清理机制
- 对于长时间挂起的请求需要特殊处理
错误处理增强
完善的实现应该考虑:
- 请求失败的情况(onError回调)
- 请求取消的情况
- 重复测量的处理
最佳实践建议
基于以上分析,推荐采用Map方案,并做以下增强:
class RequestTimer {
private timers = new Map<Request, number>();
start(request: Request) {
this.timers.set(request, performance.now());
}
end(request: Request): number | null {
const startTime = this.timers.get(request);
if (startTime === undefined) return null;
this.timers.delete(request);
return performance.now() - startTime;
}
clear() {
this.timers.clear();
}
}
// 使用示例
const timer = new RequestTimer();
const middleware: Middleware = {
onRequest: ({ request }) => timer.start(request),
onResponse: ({ request }) => {
const duration = timer.end(request);
if (duration !== null) {
metrics.trackApiLatency(duration);
}
},
onError: ({ request }) => {
timer.end(request); // 清理记录
}
};
扩展思考
这种测量模式可以进一步扩展为:
- 请求统计系统
- 性能报警机制
- 自动重试策略依据
- 用户体验优化指标
总结
在openapi-typescript项目中测量API请求时间是一个常见需求,通过合理利用中间件机制和Map数据结构,可以实现高效、安全的测量方案。本文介绍的RequestTimer类封装了核心逻辑,既保持了代码的整洁性,又提供了足够的扩展性,是生产环境中推荐的实现方式。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133