如何在openapi-typescript中测量请求耗时
2025-06-01 23:21:40作者:廉皓灿Ida
在基于TypeScript的前端开发中,openapi-typescript项目提供了一个强大的工具集,其中openapi-fetch客户端可以帮助开发者轻松地与OpenAPI规范的API进行交互。在实际开发中,我们经常需要测量API请求的耗时,以便进行性能监控和优化。本文将介绍几种在openapi-fetch中测量请求时间的有效方法。
请求耗时测量的重要性
API请求耗时是衡量应用性能的重要指标之一。通过测量请求耗时,开发者可以:
- 识别性能瓶颈
- 监控API响应时间的变化
- 优化用户体验
- 设置合理的超时时间
使用中间件测量请求耗时
openapi-fetch提供了中间件机制,允许开发者在请求生命周期的不同阶段插入自定义逻辑。我们可以利用这一特性来实现请求耗时的测量。
方法一:扩展Request对象
第一种方法是直接在Request对象上添加时间戳属性:
const myMiddleware: Middleware = {
async onRequest({ request }) {
// 在请求开始时记录时间
(request as any).startTime = performance.now();
},
async onResponse({ request }) {
const endTime = performance.now();
// 计算耗时
const latency = endTime - (request as any).startTime;
console.log(`请求耗时: ${latency}ms`);
},
};
这种方法简单直接,但需要使用类型断言来绕过TypeScript的类型检查。
方法二:使用Map存储请求时间
更优雅的解决方案是使用Map来存储请求和对应的时间戳:
const requestStartTimes: Map<Request, number> = new Map();
const myMiddleware: Middleware = {
async onRequest({ request }) {
requestStartTimes.set(request, performance.now());
},
async onResponse({ request }) {
const startTime = requestStartTimes.get(request);
requestStartTimes.delete(request);
if (startTime) {
const endTime = performance.now();
const latency = endTime - startTime;
console.log(`请求耗时: ${latency}ms`);
}
},
};
这种方法避免了修改Request对象,更加符合TypeScript的类型安全原则。
性能测量最佳实践
在实际项目中,除了基本的耗时测量外,还可以考虑以下优化:
- 错误处理:确保在请求失败时也能记录耗时
- 统计聚合:不只是记录单个请求耗时,还可以计算平均耗时、P99等指标
- 上下文关联:将请求耗时与业务上下文关联,便于分析
- 阈值告警:设置耗时阈值,超过时触发告警
总结
在openapi-typescript生态中,通过openapi-fetch的中间件机制,我们可以灵活地实现请求耗时的测量。无论是直接扩展Request对象还是使用Map存储时间戳,都能有效地获取请求耗时数据。建议开发者根据项目实际情况选择合适的方法,并结合业务需求进行适当的扩展和优化。
对于大型项目,还可以考虑将测量结果上报到监控系统,实现更全面的性能监控和分析。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133