Nanotron项目中的学习率调度器恢复问题分析与解决方案
2025-07-07 09:44:25作者:牧宁李
问题背景
在Nanotron分布式训练框架中,当使用流水线并行(PP)且并行度大于1时,从检查点(checkpoint)恢复训练会遇到一个关键错误。具体表现为在加载学习率调度器(LR Scheduler)状态时出现"list index out of range"错误。
问题根源分析
这个问题的根本原因与Nanotron框架中参数组(param_groups)的组织方式变更有关:
- 早期版本中,所有参数都放在单个参数组中
- 新版本改为每个参数单独放在一个参数组中
- LambdaLR调度器会为每个参数组创建一个lr_lambda函数
- 在流水线并行环境下,不同进程拥有的参数数量不同,导致lr_lambdas列表长度不一致
- 当尝试从检查点恢复时,状态字典中的lr_lambdas与当前进程的期望不匹配
技术细节
在PyTorch的LambdaLR实现中,学习率调度器会为每个参数组维护一个独立的lr_lambda函数。当框架从检查点恢复时,会尝试将这些函数状态加载到当前调度器中。由于流水线并行导致不同进程的参数分布不同,这种不对称性导致了索引越界错误。
解决方案
目前有两种可行的解决方案:
官方修复方案
- 统一各进程的lr_lambdas处理逻辑
- 确保所有参数组使用相同的学习率调度策略
- 在状态恢复时正确处理参数组数量不匹配的情况
临时解决方案
对于已经训练到一半的模型,可以采用以下步骤:
- 使用修复后的代码训练一个迭代
- 保存一个新的检查点
- 从原始检查点手动复制状态值到新检查点文件
- 注意不能直接复制文件,因为不同PP rank的检查点大小/形状可能不同
最佳实践建议
- 对于新训练任务,建议使用修复后的代码版本
- 对于中断的训练任务,可以采用状态重建的方式恢复
- 在自定义学习率调度器时,考虑参数组数量变化的影响
- 定期验证检查点的可恢复性
总结
这个问题展示了分布式训练系统中状态恢复的复杂性,特别是在参数分组和并行策略交互时可能出现的边缘情况。通过理解参数组与学习率调度器的关系,开发者可以更好地设计鲁棒的训练恢复机制。Nanotron团队已经提供了修复方案,用户可以根据自己的训练阶段选择合适的恢复策略。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19