SmolMLv1预训练复现指南:从配置到数据预处理
2025-07-03 14:19:34作者:戚魁泉Nursing
本文详细介绍了如何复现SmolML项目中135M参数规模的语言模型SmolMLv1的预训练过程。作为基于Nanotron框架训练的高效语言模型,SmolMLv1的预训练涉及多个关键环节,包括环境配置、数据准备和训练参数设置。
预训练框架选择
SmolMLv1使用Nanotron作为预训练框架,这是一个专为大规模语言模型训练优化的工具。Nanotron提供了分布式训练支持,能够有效利用多GPU/TPU资源进行模型训练。项目维护者提供了完整的训练配置文件,包含模型架构、优化器设置、学习率调度等关键参数。
数据准备流程
预训练数据来源于SmolLM-Corpus,包含五个主要组成部分:
- StackOverflow数据:使用bigcode组织提供的stackoverflow-clean数据集,预处理时需要指定content列作为文本内容
- OpenWebMath数据:采用open-web-math组织发布的数学相关语料
- Python教育数据:需要按照特定流程从smollm-corpus获取
- 其他两部分数据:同样需要遵循官方提供的获取方式
数据预处理使用Nanotron提供的preprocess_data.py脚本,关键参数包括:
- tokenizer路径
- 输出目录
- 并行任务数
- 数据集路径
- 文本列名(对于非标准数据集)
常见问题解决
在复现过程中,开发者可能会遇到以下典型问题:
- 配置兼容性问题:早期版本的配置文件可能与最新版Nanotron不兼容,需要更新launch_slurm_config等相关字段
- 数据预处理错误:当数据集不包含默认的text列时,需要显式指定--column参数
- 数据集获取:部分数据需要遵循特定流程下载,不能直接从HuggingFace获取原始版本
训练配置要点
SmolMLv1的预训练配置包含多个重要参数:
- 模型架构:135M参数的Transformer结构
- 优化器设置:包括学习率、权重衰减等
- 批次大小和梯度累积步数
- 学习率调度策略
- 分布式训练参数
这些参数需要根据实际硬件环境进行调整,特别是当使用不同数量的GPU时,需要重新计算全局批次大小。
复现建议
对于希望复现SmolMLv1预训练的研究者,建议:
- 仔细检查Nanotron版本与配置文件的兼容性
- 按照官方文档准备所有数据集
- 从小规模测试开始,验证数据处理流程
- 根据硬件条件适当调整批次大小等参数
- 监控训练过程中的关键指标,确保与官方结果一致
通过遵循这些指导,研究者可以成功复现SmolMLv1的预训练过程,为进一步的模型研究和应用开发奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134