Livebook中M1 MacBook Pro上神经网络智能单元的环境配置问题解析
2025-06-08 03:18:48作者:曹令琨Iris
问题背景
在使用Livebook v0.13.3进行神经网络任务开发时,M1 MacBook Pro用户可能会遇到一个常见的环境配置问题。当尝试创建新的神经网络智能单元并安装依赖时,系统会抛出编译错误,提示XLA_TARGET环境变量设置不正确。
错误现象
具体错误信息显示:
could not compile dependency :exla
expected XLA_TARGET to be one of "cpu", "cuda", "rocm", "tpu", "cuda118", "cuda120", but got: "mps"
这表明系统检测到了一个不支持的XLA_TARGET值"mps",而EXLA库期望的是预定义的一组值之一。
问题根源
经过分析,这个问题通常由以下原因导致:
- 用户可能无意中在系统环境变量中设置了XLA_TARGET="mps"
- Livebook应用内部的环境变量设置中可能包含了这个配置
- 某些安装脚本或配置工具可能自动添加了这个设置
解决方案
要解决这个问题,可以采取以下步骤:
-
检查Livebook环境变量设置: 在Livebook界面中,导航至设置菜单,查看环境变量部分,确认是否有XLA_TARGET的设置
-
验证当前环境变量: 可以在Livebook中新建一个Elixir单元,执行:
System.get_env("XLA_TARGET")查看返回值
-
清除错误配置: 如果发现XLA_TARGET被设置为"mps",应该将其删除或修改为支持的值之一,如"cpu"
-
重新编译依赖: 清除配置后,可以尝试重新编译依赖:
Mix.install([:exla], force: true)
技术细节
XLA(Accelerated Linear Algebra)是Google开发的线性代数编译器,EXLA是其在Elixir中的实现。XLA_TARGET环境变量用于指定要使用的计算后端:
- cpu:使用CPU进行计算
- cuda:使用NVIDIA GPU进行计算
- rocm:使用AMD GPU进行计算
- tpu:使用Google的TPU进行计算
M1芯片的Metal Performance Shaders(MPS)目前不是EXLA官方支持的后端选项,因此会导致编译失败。
最佳实践建议
- 对于M1 Mac用户,建议使用"cpu"作为XLA_TARGET值
- 在共享笔记本时,注意检查环境变量设置,避免将个人配置传播给其他用户
- 定期检查Livebook的环境变量设置,确保没有冲突的配置
- 如果需要进行GPU加速,可以考虑使用官方支持的后端或等待未来对MPS的支持
通过正确配置环境变量,M1 Mac用户可以在Livebook中顺利使用神经网络智能单元进行机器学习开发。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
668
154
Ascend Extension for PyTorch
Python
218
235
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
306
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
259
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
63
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
652
仓颉编程语言运行时与标准库。
Cangjie
141
876
仓颉编译器源码及 cjdb 调试工具。
C++
133
866