gym-pusht 项目启动与配置教程
2025-05-17 17:26:46作者:申梦珏Efrain
1. 项目目录结构及介绍
gym-pusht 项目是一个开源项目,旨在创建一个用于强化学习的 PushT 环境。以下是项目的目录结构及其介绍:
gym-pusht/
├── .gitignore # 忽略文件列表
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── example.py # 项目示例代码文件
├── gym_pusht/
│ ├── __init__.py # gym_pusht 包的初始化文件
│ ├── PushT.py # PushT 环境实现的主要文件
│ ├── rendering.py # 渲染相关代码文件
│ └── utils.py # 实用工具函数文件
├── poetry.lock # Poetry 包管理工具的锁文件
├── pyproject.toml # 项目配置文件
├── tests/
│ ├── __init__.py # 测试包的初始化文件
│ └── test_pushT.py # PushT 环境的测试代码文件
└── workflows/
├── fix_coverage.yml # 代码覆盖率修复工作流文件
└── pre-commit.yml # 预提交钩子配置文件
.gitignore: 指定 Git 忽略的文件和目录。LICENSE: 项目遵循的 Apache-2.0 许可证。README.md: 项目的详细介绍,包括安装、使用和贡献指南。example.py: 项目的基本使用示例。gym_pusht/: 包含项目主要代码的目录。__init__.py: 初始化 gym_pusht 包。PushT.py: 实现了 PushT 环境的类。rendering.py: 实现了渲染功能的代码。utils.py: 提供了项目所需的辅助函数。
poetry.lock: 记录了项目依赖的 Poetry 锁文件。pyproject.toml: 使用 Poetry 管理项目依赖和配置的文件。tests/: 包含测试代码的目录。__init__.py: 初始化测试包。test_pushT.py: 对 PushT 环境进行单元测试的代码。
workflows/: 包含持续集成和自动化工作流的目录。fix_coverage.yml: 代码覆盖率修复工作流配置。pre-commit.yml: 预提交钩子配置。
2. 项目的启动文件介绍
项目的启动文件是 example.py,它提供了如何创建和运行 PushT 环境的基本示例。以下是 example.py 的内容介绍:
import gymnasium as gym
import gym_pusht
# 创建 PushT 环境实例
env = gym.make("gym_pusht/PushT-v0", render_mode="human")
# 重置环境并获取初始观测
observation, info = env.reset()
# 主循环,执行动作并观察结果
for _ in range(1000):
action = env.action_space.sample() # 随机选择动作
observation, reward, terminated, truncated, info = env.step(action)
image = env.render() # 获取环境渲染图像
# 如果达到终止条件,则重置环境
if terminated or truncated:
observation, info = env.reset()
# 关闭环境
env.close()
该文件演示了如何使用 gym.make 创建 PushT 环境,如何使用 env.reset() 重置环境,以及如何通过 env.step() 执行动作并获取反馈。
3. 项目的配置文件介绍
项目的配置文件是 pyproject.toml,它使用 Poetry 来管理项目的依赖和配置。以下是 pyproject.toml 的内容介绍:
[tool.poetry]
name = "gym-pusht"
version = "0.1.5"
description = "A gymnasium environment for PushT"
authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = "^3.10"
[tool.poetry.dev-dependencies]
pytest = "^6.2"
name: 项目的名称。version: 项目的版本号。description: 项目的简短描述。authors: 项目作者的列表。dependencies: 项目运行所需的依赖。dev-dependencies: 项目开发过程中所需的依赖,例如测试框架。
通过修改 pyproject.toml 文件,可以管理项目的依赖项和元数据。使用 Poetry 的 poetry install 命令可以安装这些依赖项。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.61 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
116
149
暂无简介
Dart
578
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
605
182
仓颉编译器源码及 cjdb 调试工具。
C++
121
287
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.13 K