SCENIC 项目使用指南
2024-09-19 13:02:50作者:段琳惟
1. 项目介绍
SCENIC(Single-Cell rEgulatory Network Inference and Clustering)是一个用于从单细胞RNA测序(scRNA-seq)数据中推断基因调控网络(Gene Regulatory Networks, GRNs)和细胞类型的计算方法。SCENIC通过结合转录因子(Transcription Factors, TFs)和顺式调控元件(cis-regulatory sequences)来指导细胞状态的发现。该项目提供了一个R包,帮助研究人员从单细胞数据中提取有价值的生物学见解。
2. 项目快速启动
安装SCENIC
首先,确保你已经安装了R和RStudio。然后,使用以下命令安装SCENIC:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("SCENIC")
加载SCENIC包
安装完成后,加载SCENIC包:
library(SCENIC)
数据准备
假设你已经有了单细胞RNA测序数据,数据格式为矩阵,行表示基因,列表示细胞。以下是一个简单的数据加载示例:
# 假设你的数据存储在matrix对象中
exprMat <- readRDS("path_to_your_data.rds")
运行SCENIC
以下是一个简单的SCENIC运行示例:
# 初始化SCENIC设置
scenicOptions <- initializeScenic(org = "hgnc", dbDir = "path_to_db", nCores = 10)
# 运行SCENIC流程
runSCENIC_1_coexNetwork2modules(scenicOptions)
runSCENIC_2_createRegulons(scenicOptions)
runSCENIC_3_scoreCells(scenicOptions, exprMat)
3. 应用案例和最佳实践
应用案例
SCENIC已被广泛应用于多种生物学研究中,例如:
- 肿瘤研究:通过分析肿瘤细胞的单细胞RNA测序数据,SCENIC可以帮助识别肿瘤异质性和潜在的治疗靶点。
- 神经科学:在脑组织中,SCENIC可以用于识别不同神经元类型的基因调控网络,从而揭示神经发育和疾病的分子机制。
最佳实践
- 数据预处理:确保输入数据的基因表达矩阵已经过适当的归一化和过滤,以减少噪音和假阳性。
- 参数调优:根据具体的研究问题和数据特性,调整SCENIC的参数,如转录因子数据库的选择和网络推断的算法。
- 结果验证:使用实验验证或公共数据库验证SCENIC推断的基因调控网络,以确保结果的可靠性。
4. 典型生态项目
SCENIC作为一个强大的单细胞数据分析工具,与其他相关项目和工具形成了丰富的生态系统:
- Seurat:一个广泛使用的单细胞RNA测序数据分析R包,可以与SCENIC结合使用,进行更全面的单细胞数据分析。
- pySCENIC:SCENIC的Python实现,适合那些更熟悉Python的开发者。
- SCope:一个用于探索和可视化单细胞数据的Web界面,可以与SCENIC的输出结果结合使用。
通过这些工具的结合使用,研究人员可以更全面地理解和分析单细胞RNA测序数据,揭示细胞内部的复杂调控网络。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
200
219
仓颉编译器源码及 cjdb 调试工具。
C++
129
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100