Darts项目中Bayesian Ridge回归模型预测置信区间的实现方法
2025-05-27 22:59:42作者:彭桢灵Jeremy
在时间序列预测领域,Darts是一个功能强大的Python库,它提供了多种预测模型的封装。其中RegressionModel作为通用回归模型容器,可以包装scikit-learn中的各种回归算法。本文将重点探讨如何在使用Bayesian Ridge回归时获取预测结果的置信区间。
Bayesian Ridge回归的特性
Bayesian Ridge(贝叶斯岭回归)是scikit-learn提供的一种贝叶斯线性回归实现。与传统线性回归不同,它通过引入先验分布来估计参数,并能够为每个预测点输出一个概率分布,而非单一值。这种特性使得我们可以计算每个预测点的置信区间,为决策提供更多信息。
Darts中的实现限制
在Darts的RegressionModel中使用Bayesian Ridge时,直接通过predict_kwargs传递return_std参数会遇到问题。这是因为:
- Darts的内部逻辑假设所有预测方法返回统一格式的结果
- 当output_chunk_length>1或目标序列为多维时,模型会被MultiOutputRegressor包装
- 返回标准差会改变输出结构,破坏historical_forecasts等方法的一致性
替代解决方案
方法一:手动计算置信区间
可以通过访问模型属性手动计算标准差:
- 在每次fit()后保存模型的alpha_和sigma_属性
- 根据预测值使用贝叶斯公式计算标准差
- 参考scikit-learn源码中的计算方法
关键模型属性包括:
- alpha_:噪声精度参数
- sigma_:参数协方差矩阵
方法二:使用概率预测模型
Darts支持多种概率预测模型,可以更自然地获取预测分布:
- 使用QuantileRegression等内置概率模型
- 设置num_samples参数生成多个预测样本
- 从样本分布中直接计算置信区间
这种方法更符合Darts的设计理念,且不需要修改底层代码。
实现建议
对于需要精确控制Bayesian Ridge特性的高级用户,建议:
- 创建RegressionModel的子类
- 重写_predict_and_sample方法以支持标准差返回
- 确保修改后的方法与其他组件兼容
对于大多数用户,使用Darts内置的概率预测功能是更简单可靠的选择,既能获得不确定性估计,又能保证框架的稳定性。
总结
虽然Darts没有直接暴露Bayesian Ridge的标准差返回功能,但通过上述方法仍然可以实现预测置信区间的计算。理解这一限制有助于用户根据实际需求选择最合适的实现方式,在模型灵活性和框架稳定性之间取得平衡。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1