Darts项目中多时间序列回归模型的使用指南
2025-05-27 20:49:48作者:裘旻烁
概述
在时间序列预测领域,Darts是一个功能强大的Python库,它提供了多种预测模型和工具。本文将重点介绍如何使用Darts中的RegressionModel来处理多时间序列预测任务,特别是当数据包含静态协变量(static covariates)和过去协变量(past covariates)时的处理方法。
数据准备
在多时间序列预测场景中,数据通常以"长格式"存储,即所有时间序列堆叠在一个数据框中,通过一个标识列来区分不同的时间序列。Darts提供了TimeSeries.from_group_dataframe()方法来方便地将这种格式的数据转换为多个TimeSeries对象。
dados_target_t = TimeSeries.from_group_dataframe(
df=dados_target,
group_cols='hierarquia',
time_col='date',
value_cols='value',
static_cols=['Market', 'family'],
fill_missing_dates=False,
fillna_value=None
)
静态协变量的处理
静态协变量是指不随时间变化的特征,它们对于区分不同的时间序列很有帮助。然而,Darts目前只支持数值型的静态协变量。如果数据中包含字符串类型的静态协变量,需要进行转换:
- 手动转换:在创建TimeSeries之前,将字符串类型的静态协变量转换为数值编码
- 使用StaticCovariatesTransformer:Darts提供了内置的转换器来处理这种情况
from darts.dataprocessing.transformers import StaticCovariatesTransformer
transformer = StaticCovariatesTransformer(
cols_num=[] # 不缩放任何数值列,只处理分类列
)
dados_target_t = transformer.fit_transform(dados_target_t)
过去协变量的使用
过去协变量是指与目标变量同期可用的外部变量。在使用时需要注意:
- 每个目标时间序列都需要一个对应的协变量时间序列
- 如果所有目标序列使用相同的协变量,可以简单复制
dados_past = TimeSeries.from_dataframe(df=data_past)
past_covariates = [dados_past for _ in range(len(dados_target_t))]
回归模型的配置
Darts的RegressionModel可以包装scikit-learn等库中的回归模型,用于时间序列预测。关键参数包括:
lags:目标变量的滞后阶数lags_past_covariates:过去协变量的滞后阶数output_chunk_length:预测步长use_static_covariates:是否使用静态协变量
from sklearn.linear_model import Lasso
model_params = {'alpha': 1}
model = Lasso(**model_params)
forecaster = RegressionModel(
model=model,
lags=12,
lags_past_covariates=4,
output_chunk_length=7,
use_static_covariates=True
)
模型训练与预测
训练和预测时需要确保传入的数据结构一致:
# 训练模型
forecaster.fit(
series=dados_target_t,
past_covariates=past_covariates
)
# 进行预测
predictions = forecaster.predict(
n=7,
series=dados_target_t,
past_covariates=past_covariates
)
结果处理
预测结果是一个TimeSeries列表,可以方便地转换为DataFrame格式:
results = pd.DataFrame()
for series, label in zip(predictions, targets):
df = series.pd_dataframe().rename(columns={'value': label})
results = pd.concat([results, df], axis=1)
常见问题与解决方案
- 协变量数量不匹配:确保目标序列和协变量序列的数量相同
- 静态协变量类型错误:只支持数值型静态协变量,字符串类型需要转换
- 时间对齐问题:检查所有时间序列的时间索引是否一致
总结
Darts提供了强大的工具来处理多时间序列预测任务,特别是当数据包含静态和过去协变量时。通过合理的数据准备和模型配置,可以构建出高效的时间序列预测模型。掌握这些技巧后,用户可以轻松处理复杂的时间序列预测场景。
登录后查看全文
热门项目推荐
HunyuanImage-3.0HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00
ops-transformer本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043
Hunyuan3D-Part腾讯混元3D-Part00
GitCode-文心大模型-智源研究院AI应用开发大赛GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286
Hunyuan3D-Omni腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
22
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
162
2.05 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15
React Native鸿蒙化仓库
C++
199
279
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16
Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到科学研究中,共同推动知识的进步。
HTML
22
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
557
基于QEMU构建的RISC-V64 SOC,支持Linux,baremetal, RTOS等,适合用来学习Linux,后续还会添加大量的controller,实现无需实体开发板,即可学习Linux和RISC-V架构
C
19
5