LLMs-from-scratch项目中数据批处理流程的图文一致性分析
2025-05-01 19:24:46作者:傅爽业Veleda
在深度学习模型训练过程中,数据预处理和批处理是至关重要的环节。rasbt教授的开源项目LLMs-from-scratch作为从零实现大型语言模型的优秀教程,其第五章详细介绍了文本数据的处理流程。然而,近期有读者发现书中图5.9与配套Jupyter notebook中的图示存在不一致的情况,这引发了我们对数据处理流程标准化的思考。
问题背景
在自然语言处理任务中,文本数据通常需要经过以下处理步骤:
- 原始文本分割为训练集和验证集
- 对文本进行tokenize(分词/标记化)
- 将tokenized文本划分为固定长度的chunk(文本块)
- 打乱数据顺序并组织成batch(批次)用于模型训练
图文差异的具体表现
书中描述的流程参数为:
- 文本块长度:6
- 批次大小:2
而实际图示中展示的却是:
- 步长(stride):4
- 批次大小:1
这种参数不一致会导致读者在学习时产生困惑,特别是对于初学者而言,准确理解数据处理流程对后续模型训练至关重要。
技术要点解析
正确的数据处理流程应该包含以下关键参数:
-
文本块长度(block_size):决定每个输入样本的长度,影响模型能够处理的上下文范围。较大的块长度可以捕获更长距离的依赖关系,但会增加内存消耗。
-
步长(stride):控制文本块之间的重叠程度。步长小于块长度时会产生重叠样本,可以增加训练数据量,但可能导致过拟合。
-
批次大小(batch_size):决定每次迭代送入模型的样本数量。较大的批次可以提高训练效率,但需要更多显存。
最佳实践建议
对于语言模型训练的数据处理,建议:
- 保持图文说明的一致性,使用相同的参数配置
- 在示例中明确标注所有关键参数
- 对于重叠采样策略,应该特别说明步长的选择依据
- 批次大小的选择应考虑GPU显存容量和训练效率的平衡
总结
数据处理是语言模型训练的基础环节,准确的文档说明对学习者的理解至关重要。LLMs-from-scratch项目作为教学资源,及时修正这类图文不一致问题,有助于提高学习体验。对于深度学习实践者而言,理解数据批处理的每个细节参数,是构建高效训练流程的重要前提。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249