LLMs-from-scratch项目中梯度累积的正确实现方式
在深度学习模型训练过程中,梯度累积是一种常见的技术手段,特别适用于显存受限的场景。rasbt/LLMs-from-scratch项目中的实验代码引发了关于梯度累积正确实现方式的讨论,这值得深入探讨。
梯度累积的基本原理
梯度累积的核心思想是将多个小批量的梯度累加起来,然后一次性更新模型参数。这种方法允许我们在有限的显存条件下,模拟更大的批量大小。例如,当实际批量大小为1时,通过8次梯度累积,可以等效于批量大小为8的训练效果。
常见实现误区
在项目原始代码中,梯度累积的实现存在两个潜在问题:
-
首次迭代即更新:使用
batch_idx % accumulation_steps == 0
作为条件,会导致第一次迭代(batch_idx=0)就立即触发参数更新,这违背了梯度累积的初衷。 -
尾部批次处理不当:当总批次数量不能被累积步数整除时,最后几个批次的梯度可能无法被正确处理,导致训练效率降低。
正确的实现方式
更稳健的实现应该采用以下逻辑:
if (batch_idx + 1) % accumulation_steps == 0 or (batch_idx + 1) == len(train_loader):
optimizer.step()
optimizer.zero_grad()
这种实现方式具有以下优势:
-
首次迭代正确处理:避免了第一次迭代就立即更新的问题。
-
尾部批次完整处理:确保所有批次的梯度都能被充分利用,不会遗漏最后几个批次。
-
边界条件覆盖:通过
(batch_idx + 1) == len(train_loader)
条件,保证了在训练结束时无论累积了多少梯度都会执行更新。
实际应用建议
在实际项目中实现梯度累积时,还需要注意以下几点:
-
学习率调整:由于等效批量大小改变,可能需要相应调整学习率。
-
BatchNorm层处理:如果模型包含BatchNorm层,需要注意其统计量计算方式。
-
训练曲线平滑:梯度累积会导致参数更新频率降低,训练曲线可能看起来更加"跳跃"。
-
内存管理:虽然梯度累积可以减少显存占用,但仍需注意中间变量的内存消耗。
通过正确实现梯度累积技术,开发者可以在资源受限的环境下训练更大的模型,这对于LLMs-from-scratch这类从头实现语言模型的项目尤为重要。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









