LLMs-from-scratch项目中梯度累积的正确实现方式
在深度学习模型训练过程中,梯度累积是一种常见的技术手段,特别适用于显存受限的场景。rasbt/LLMs-from-scratch项目中的实验代码引发了关于梯度累积正确实现方式的讨论,这值得深入探讨。
梯度累积的基本原理
梯度累积的核心思想是将多个小批量的梯度累加起来,然后一次性更新模型参数。这种方法允许我们在有限的显存条件下,模拟更大的批量大小。例如,当实际批量大小为1时,通过8次梯度累积,可以等效于批量大小为8的训练效果。
常见实现误区
在项目原始代码中,梯度累积的实现存在两个潜在问题:
-
首次迭代即更新:使用
batch_idx % accumulation_steps == 0作为条件,会导致第一次迭代(batch_idx=0)就立即触发参数更新,这违背了梯度累积的初衷。 -
尾部批次处理不当:当总批次数量不能被累积步数整除时,最后几个批次的梯度可能无法被正确处理,导致训练效率降低。
正确的实现方式
更稳健的实现应该采用以下逻辑:
if (batch_idx + 1) % accumulation_steps == 0 or (batch_idx + 1) == len(train_loader):
optimizer.step()
optimizer.zero_grad()
这种实现方式具有以下优势:
-
首次迭代正确处理:避免了第一次迭代就立即更新的问题。
-
尾部批次完整处理:确保所有批次的梯度都能被充分利用,不会遗漏最后几个批次。
-
边界条件覆盖:通过
(batch_idx + 1) == len(train_loader)条件,保证了在训练结束时无论累积了多少梯度都会执行更新。
实际应用建议
在实际项目中实现梯度累积时,还需要注意以下几点:
-
学习率调整:由于等效批量大小改变,可能需要相应调整学习率。
-
BatchNorm层处理:如果模型包含BatchNorm层,需要注意其统计量计算方式。
-
训练曲线平滑:梯度累积会导致参数更新频率降低,训练曲线可能看起来更加"跳跃"。
-
内存管理:虽然梯度累积可以减少显存占用,但仍需注意中间变量的内存消耗。
通过正确实现梯度累积技术,开发者可以在资源受限的环境下训练更大的模型,这对于LLMs-from-scratch这类从头实现语言模型的项目尤为重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00